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Due to the rapid development of information and communication techno-
logy, a new communication network, which combines the "real world" and
"virtual world" together and recognizes the whole combination as one
closely interacting system, has emerged. This network is the cyber-physical
system (CPS). The CPS with long lifetime or lifecycle is defined as long-living
cyber-physical system (LL-CPS).

In many areas, especially in smart factories, digital manufacturing and smart
logistics, the LL-CPS plays a very important role and should be always
operated to meet continuous and fast-changing requirements, for example,
the proliferation of business models, the rapid development of technology,
the fast-changing market and customer requirements etc.

However, the development of a LL-CPS is accompanied by risks and high
expenditures. Generally, a LL-CPS cannot be defined perfectly at the be-
ginning. The multiple interactions between cyber and physical parts in a LL-
CPS make engineering difficult. Changes of these parts can generate some
problems during evolution of a LL-CPS. At present, approaches or pro-
cedures have not been defined. This reduces risks of development and
optimizes expenditures of system implementation. Based on a uniform
formal description of LL-CPSs, this thesis provides an approach to guarantee
the consistency between system evolution requirements and system im-
plementation during the managed evolution of LL-CPSs. Furthermore, this
approach is also used to optimize expenditures of system implementation.
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Abstract

The continued rapid information technological progress is causing major changes. From
embedded systems to intelligent embedded systems and cyber-physical systems, the system
evolution is always confronted with the challenge of the frequently changing requirements:
the proliferation of business models, the rapid development of technology, the fast changing
market and customer requirements, new varieties of development methods and models, etc.
Cyber-physical systems (CPS) with a long-term life cycle (long-living) play a very important role
in many areas, especially in smart factories, digital manufacturing, smart logistics, and energy
efficiency. It combines the physical part with the cyber part in a holistic way, where the two
parts have to flexibly and dependably adapt to each other to adapt to the changing system
environment. On the other hand, a long-living CPS is complicated and multi-configurational,
so an incompatible or non-combinable system development can lead to problems or high
expenditures. Therefore, an approach is required to reduce the evolution risks and investment
needs during the evolution of long-living CPSs.

This thesis provides an approach for the managed evolution of long-living CPSs, which is based
on the formal descriptions and model transformations of managed evolution of the long-living
CPSs. This approach guarantees the consistency between the system evolution requirements
and system implementation. Furthermore, with this approach the influence factors for
investment needs like the cost of implementation can be scaled to optimize the expenditures
of implementation. This approach is evaluated with two practical cases to ascertain the
suitability for the managed evolution of long-living CPSs.
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Chapter 1 - Introduction

1 Introduction

Content

1.1 Long-Living Cyber-physical system
1.2 Motivation
1.3 Goals of this Work

1.4 Structure and Content of the thesis

Today’s world is entering in the networking era. Due to the rapid development of information
and communication technology, a new communication network has emerged, which
combines the “real world” and “virtual world” together and recognizes the whole combination
as one closely interacting system. This network is named the cyber-physical system (CPS).

In many areas, especially in smart factories, digital manufacturing, smart logistics, and energy
efficiency, the CPS plays a very important role. For instance, modern mechanical engineering
products are increasingly being supplemented by programmable controllers. In diverse areas
of application like automobile or production automation, the trend is to network the
embedded systems with each other, but also to integrate them into a higher digital level [1].

A long-living cyber-physical system (LL-CPS) is defined as a huge CPS with a complex system
architecture, long time life cycle and dynamic changing system boundary. In this chapter, the
definitions and characteristics of CPS, long-living systems and LL-CPSs will first be introduced.
The ongoing LL-CPS requires continuous operation to meet the fast changing requirements.
Section 1.2 introduces the motivation of the evolution of LL-CPSs.

An approach is regarded as the goal of this work and it is used for the managed evolution of
LL-CPSs with the local minimal costs and controlled risks in the operations, which is introduced
in section 1.3. The structure and content of this thesis are outlined in section 1.4.
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1.1 Long-Living Cyber-Physical Systems

What is a Cyber-Physical System?

There are varied understandings about CPSs. The first proposition of a CPS was characterized
by Helen Gill in the USA to describe a connection between physical processes with a
calculation share. The National Science Foundation (NSF) declared it a core research point of
national research work at the end of 2006. Since then, many different definitions and
descriptions of CPSs have been developed. The general definitions or descriptions are based

on the conceptual definition of Helen Gill [2].

Because there is no standard and prevailing definition and description of CPSs, some popular
definitions and descriptions are selected from two different perspectives and introduced in

this section.

From the perspective of integration and networking:

R. Rajkumar defined a CPS as “a physical and engineered system whose
operations are monitored, coordinated, controlled and integrated by a
computing and communication core” [3].

Edward A. Lee defined a CPS as “the integration of computation with physical
processes.” The computation part can control and monitor the physical processes,
and the physical processes affect the computations with feedback. These
interaction effects will be implied with the integration and networking between
the computation and physical part [4].

A.Sangiovanni-Vincentelli described a combination system with “a cyber side
(computing and networking) with a physical side (mechanical, electrical and
chemical processes)” as a definition of a CPS [5].

From a software-intensive perspective:

In the description of H. Giese et al., “Cyber-physical Systems (CPSs) present a
unified view of computing systems that interact strongly with their physical
environment” [6].

Compared to traditional embedded systems, CPSs are more modular, dynamic,
networked and large-scale and can provide more computing. I. Gerostathopoulos
described that CPSs increasingly depend on software, and the software part has
become their most intricate and extensive constituent [7].

E. Geisberger and M.Broy defined a CPS as “an open and networked system.” It
uses sensors to identify situations and information in the physical world and
makes them available to the network-based services, as well as acting directly on

2
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the processes in the physical world through actuators to control the behaviour of
devices, things, and services [8]. In addition, in the publication of M. Broy
software-intensive systems are regarded as innovation drivers that enable new
functionalities to be developed in different application areas [1].

Characteristics of Cyber-Physical System

Although there are so many different definitions and descriptions of CPSs, the core
descriptions are essentially the same, e.g. the CPS connects the cyber and physical worlds. The
following characteristics position a CPS with five aspects [8]:

(1) Fusing of the physical and virtual world

(2) System of systems with dynamic changing of system boundaries

(3) Context-adaptive and fully or partially autonomous system and active control
in real time

(4) Cooperative systems with distributed and alternative controls

(5) Comprehensive human-system cooperation
What is a Long-Living System?

A long-living system is a system that has a long lifetime or lifecycle. Such systems are usually
used as industrial software systems.

“Software systems in the industrial automation domain are typically long-
living systems, i.e., some of them may operate for more than 20 years,
because of the investment in the underlying machines and devices. Examples
for such systems are distributed control systems to manage industrial
processes, such as power generation, manufacturing, chemical production, or
robotics systems to automate manual tasks, such as welding, pick & place, or
sealing” [9].

Not only software systems but also the connected hardware and mechanical systems in the
industrial domain are typically long-living systems. U. Goltz et al. expressed that “nowadays,
software relies on several independent or loosely coupled components using complex
technology stacks comprising hardware, middleware and reusable software components and
other (software) systems” [10]. Figure 1 shows the lifecycle of hardware/software systems,
which comprise various areas: technical system, platform and software ([10] quoted in [11]).

In the work of U. Goltz et al., the evolutionary life cycle of a technical system in automation
engineering includes two phases: the design and construction phase and operation phase (the
vertical axis in Figure 1).
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Lifecycle

design and

consruction phase /\{Q /\i /\ A7 N ﬁ\

operation phase construction commissioning of the commissioning after
entire system reengineering

technical system (mechanics, sensors, actuators)
- platform (automation hardware, electrics, operating system)
B software

Figure 1: Integration of development and operation of hardware/software systems

The requirements of new products or products changes are defined and specified in a design
and construction phase, which is understood as the driving force of system evolution in the
lifecycle (the lifetime is the horizontal axis from left to right in Figure 1). These requirements
in the design and construction phase will be implemented in the operation phase. In Figure 1,
the three different grey scales express the three areas: technical system, platform and
software and the height of each curve indicates the amount of effort required in these areas.

Before the adaptations and updates of changes starts, the system may have to be shut down
to commission the entire system. During the commissioning time, the system needs to be re-
engineered to meet new design requirements. After the re-engineering, the system proceeds
to the next commissioning and operation.

In Figure 1, the technical system and platform have a smaller change frequency than in
software engineering, because they are running for more years than software. However the
amount of effort of the technical system or platform is much more compared with software
engineering.

What is a Long-Living Cyber-Physical System?

A long-living cyber-physical system (LL-CPS) is understood as a CPS with a long lifetime or
lifecycle. The closely-dependent relationship between different areas: technical system,
platform and software in a long-living hardware/software system also exists in a LL-CPS. In
addition, a LL-CPS has the following additional characteristics:

Characteristics of LL-CPSs

e ALL-CPSis alarge-scale and complex system.

e The components in a LL-CPS always have different lifecycles and come from
different suppliers.

e A LL-CPS has a multi-level hierarchy system architecture with multi-domains.

4
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e Usually a LL-CPS has monolithic structure and cannot be defined perfectly at
the beginning.

1.2 Motivation

Although a LL-CPS is a large-scale and long-living system, it need to be in constant evolution
and should be always operated to meet the continuous and fast-changing requirements [6].

e System repeatedly extended: in general, a complex system is not defined
perfectly at the beginning. Sometime, the LL-CPS has to monitor itself for its
health. Besides being driven by the availability of new technology, the LL-CPS
is repeatedly enhanced and extended in its prolonged life time.

e Different lifetime of parts: the different parts or components of LL-CPS have
rather different life times. Some lower-cost elements like sensors and
computer platforms tend to have short life time, while the costly and
individual parts like production equipment generally have longer life time.

e Changing requirements of market: the LL-CPS needs to be continuously
developed and objective to the dynamic changes of requirements of the
market or needs of customs. Nowadays, these changes tend to be much
faster.

e Changing environments: a LL-CPS is usually used in an open and unrestricted
environment. Therefore it must be developed to adapt to the changes in the
environment.

However, the development of LL-CPS comes with risks and high expenditures. Not only the
combination of cyber and physical parts makes the engineering much more difficult but also
many other characteristics of LL-CPS can generate some problems during the evolution of LL-
CPSs [6].

e The changes can occur at different levels in a LL-CPS: the elements in a LL-CPS
allows at the same time belong to different subsystems. So the changes of
these elements can affect the structures in different subsystems. The multiple
interactions and side effects that can arise in the system can become very
complex.

e A large-scale system: like most large-scale systems, a LL-CPS is not easily
partitioned, analysed and operated. It presents a monolithic structure. “That
makes the interaction among the decision variables very hard to separate”.[5]
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e |n general, it cannot be shut down: in general, a LL-CPS cannot be shut down
for system development or evolution. Therefore, it should support developing
or evolving on a running system.

At present, there are no defined approaches or certification procedures ensuring the safe,
secure and economical evolution of LL-CPSs. In order to meet the needs for safety and
economy, an approach or procedure should be developed and established.

1.3 Goals of this Work

The goal of this work is to develop an approach for the managed evolution of a LL-CPS with
the local optimal costs and controlled risks in ongoing operations. This goal can be structured
in three sub-goals:

1. Define a description method to uniformly represent the requirements of system
evolution and the plan of implementation of a LL-CPS:
A LL-CPS can be described from different aspects. Each description aspect focuses on
certain features of a LL-CPS to make design and analysis. In this thesis, a uniform formal
description method of LL-CPSs is necessary to define the requirements of system
evolution and the plan of system implementation concurrently.

2. Derivate the requirements of a LL-CPS evolution to plan of implementation:
With the uniform formal description of LL-CPSs, the requirements of system evolution
have to be derived to the plan of implementation. This can be used to control the risks
of the managed evolution of a LL-CPS.

3. Optimize the costs of reconstruction:
The costs of system evolution can be understood as the costs of reconstruction during
the evolution of a LL-CPS in this thesis. A local optimal solution in a set of solutions is
defined as the local optimal costs during the managed evolution of a LL-CPS.

1.4 Structure and Content of the Thesis

An overview of the structure of this thesis is provided below.

In chapter 2, the basics and fundamentals in this thesis are introduced, including the relevant
definitions and knowledge for the following chapters.

Chapter 3 analyses the problems during the managed evolution of a LL-CPS based on an
example. Accordingly, the LL-CPS is modeled with two different modeling methods. One is

6
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used to model the evolution requirements of this LL-CPS, while the other one models this LL-
CPS from the implementation aspect. In addition, the existing research and approaches for
the problems during the managed evolution of LL-CPSs will be also introduced in this chapter.
At the end of this chapter, the evolution problems are summarized with four research
questions.

In chapter 4, a uniform formal description of LL-CPSs is introduced to achieve the sub-goal 1
of this thesis. The models formed with two different modeling methods can be transformed
to the uniform formal descriptions to derivate the evolution requirements to the plan of
implementation.

An approach is introduced in Chapter 5 to solve the problems during the managed evolution
of a LL-CPS. This approach is considered as the achievement of the sub-goals 2 and 3 of this
work.

Chapter 6 presents the implementation of this approach. The design and architecture of the
implementation are also introduced in this chapter.

In chapter 7, the evaluation of this approach is introduced with a concrete project.

The final chapter discusses the contributions of this work and highlights possible avenues for
further works.
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Chapter 2 - Basics and Fundamentals

2 Basics and Fundamentals

Content

2.1 Graph theory
2.1.1 Graph
2.1.2 Graph operation
2.1.3 Walks and paths
2.1.4 Graph search

2.2 Optimization problem
2.3 Systems development models

2.4 Model-driven development

2.4.1 System modeling languages

2.4.2 Metamodeling

2.4.3 Mathematical description of models

2.4.4 Model transformation
2.4.4.1 Bidirectional model transformation
2.4.4.2 Unidirectional model transformation

2.4.5 Model mapping

2.4.6 Operation of models

The relevant basics and fundamentals for this thesis are introduced in this chapter to reach a
common understanding.

First, the important definitions and algorithms in graph theory are introduced as the
mathematical foundations for the formal modeling of managed evolution of LL-CPS.

Subsequently, the local minimum cost problem is a typical application of optimization
problem. Section 2.2 introduces the basic understanding of local minimum cost by using the
standard and popular example.

In section 2.3, three classical system development models are introduce, namely the waterfall
model, phased implementation model and prototyping model. They are used to specify how
the activities are organized in the total system evolution.

Then, the model-driven development (MDD) is introduced, which focuses on creating and
exploiting domain models. A common way for system evolution description is the usage of the
term process-oriented models. In this chapter, a process-oriented modeling method named
value steam mapping is introduced. On the other hand, for planning the implementation and
costs associated with reconstruction component-oriented models are necessary. Here, two

9
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component-oriented modeling methods named block definition diagram and internal block
diagram will be introduced. In this thesis, the value steam mapping and internal block diagram
are used to model the managed evolution of LL-CPS. Subsequently, the definition of
metamodeling is introduced, which is used to analyse, construction and development of
models. Two definitions of model transformation the bidirectional model transformation and
the unidirectional model transformation are introduced in this chapter, which will be used for
model transformation in the following chapters. The mapping relationship between models is
introduced in the final section.

2.1 Graph theory

Feature models or variable models can be described in graph structures. The behaviors of the
variants can be also represented in graph-based structures [11]. Therefore, the graph-based
structure and graph theory play important roles in system engineering. In this section, some
important basics and fundamentals about graph theory will be introduced.

2.1.1 Graph

A directed graph g is formalized with a four-tuple structure [12], [13]:

Definition 1
g =V ,E , srctgt)

src:=E-> VTV
tgt = E->V

E=V XV

V is a finite set of vertices. E is a finite set of edges. The function src represents the
relationship for any edge to its source vertex, like the function tgt represents the relationship
for any edge to its target vertex. For every edge e; € E, there are one source vertex v; €V
and one target vertex v; € V, so an edge from v; to v; is represented as (v;, v;).

A set of directed graphs is defined with a set G [14]:

Definition 2
G :={g}

In a labelled directed graph g,,, all of the vertices and edges can be labelled. Though a labelling
of the vertices in a graph that represents a mapping function ct :=V,, = A, where A is a set
of labels. A labelling of the edges is also in the same way wt := E,, = B, where B is a set of

10
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labels. Often, these labels are numbers or colors, which can be called “weights” of vertices or
edges [14], [15].

Definition 3
gw 8= (VW ) EW ) SrCWJ tgtW’ Ct’ Wt’ A’ B)

STCy = STC |g, v,
tgtw :=tgt |g, v,

E, =V, XV,
ct:=1, > A
wt:=E, - B

A == a set of labels
B = a set of labels

The labels can be understood as the description information of vertices and edges in graph:s.
A directed connected graph structure is defined by the labellings of the vertices and edges,
which are used to save the description information as the attributes in the vertices and edges.

Definition 4

Gin = (Vin, Ein, STCin , tgtiy, attributes;,, Key;,, Value;,)
STCip :=STC |g, S vy,
tgtin = tgt |, - v,,
Ein =Vin XVin
attributes;,: = (Vi U Ei) = (Keyi, — Value,)

Key;, == a set of strings
Value;, = a set of strings

The function attributes;,, maps every vertex and edge to the owned attributes, which are
represented with a key-value structure comprising a set of strings Keyy ), and a set of strings
Valueysy. The relationship from the keys to values are represented with a hash function. A
set of graphs {g;,} can be represented with G;,,.

Definition 5
Gin = {gin}

11
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Another representation for this directed connected graph structure is using a set of vertices.

Definition 6
Iin ‘= {Vin}

2.1.2 Graph operation

Graphs g4 and g, are two directed connected graph graphsin G;;,,. The operator C represents
that a graph g, is a subgraph of a directed Graph g, [12], [14]:

Definition 7
91 € Gin and 92 € Gin

if

v,V V, #0

E, € E;

STCy i=STCq |g,m v,

tgt, :=tgty |g,—v,
then

92 € 91

If the graph g, is a subgraph of g;, the graph g, must include all vertices and edges of the
graph g,. The function src, is the function src; for the sets E, and V/,, as same as the function
tgt, is the function tgt, for the sets E, and V,. Accordingly, the graphs g, and g, must have
the same connection structure for the sets E, and V,.

The binary operation is used to create a new graph from two initial graphs. The graph union
for two graphs g, and g, is represented with the operator “+”.

Definition 8
g1 € Gin and 92 € Gin

93=011t 92
V3:V1UV2
E3:E1UE2

STC3 = SrC |g,s v,
tgt3 8= tgt |E3—) V3
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The graph difference for one graph compared with another is represented with the operator
“”_ The new created graph is a subgraph in the initial graph.

Definition 9
91 € Gin and 9> € Gin

gds =01 — 92
V4=V1\V2
E4=E1\E2

STC4 = STC |, v,
tgt4' 8= tgt |E4_—) V4_

9 € 91

A graph homomorphism of two graphs is defined as a mapping function hg for the vertices
and edges from one graph to another [16], [17]. Simply write for graph homomorphism is
hg(g:1)= g,- There are different kinds of graph homomorphism, for example, the injective
homomorphism, the subjective homomorphism, the bijective homomorphism (isomorphism)
and the covering maps. The mapping from a vertex to a subgraph (representing with a set of
vertices) or the mapping form edge to a path (representing with a set of edges) are also
allowed in graph homomorphism.

Definition 10
g1 € Gin and 92 € Gin

vv; € V13 (hg(vy) := vi) A (v € V)

V(vi,Viy1) € E; > (hg(v;) ,hg(viy1) ) € E;

2.1.3 Walks and paths

The walks and paths can be understood as the special forms of graphs. A walk from v, to v,
in a directed graph g, € G;, is defined with a finite sequence of vertices [12], [14], where v;
is the initial vertex and v, is the terminal vertex. Every vertex in a walk is allowed to appear
more than once.

13
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Definition 11
W,V )= (Ug, v, V)

91 € Gin
vy, v, v, } €V,
{(v1,v2) - (Vn-1, ")} € E4
w(y,V,) € g1

Vi=1,,n neN

A path is defined similarly as a walk and it is a special walk [18], [13], where v, is the initial
vertex and v, is the terminal vertex. Every vertex in a path is allowed to appear only once. If
a path p(v,,v,) isin the graph g4, it can be written as p(v,,v,) € g;1.

Definition 12
P(W1,Vn)i= (U, v, V)

91 € Gin
vy, v, v} EV,
{(v1,v2) - (-1, 7))} € Ey
P(V1,v) € G

Vi=1,-,n neN

A path is a special graph, so a path morphism is defined as a multivalued mapping function
from a path in a graph to a set of paths in another graph (see Definition 10). An example of

multivalued function is a square roots function Vx = y, if x=4, dann y=2 and -2.

There are two graphs g, € G;;, and g, € G;;,, and there is a path p(v;,v,) in g;. The
mapping function pv maps the initial vertex v; and the terminal vertex v, of the path
p(v1,vy) to avertex vy- and a vertex v,,- in graph g,. All the paths p;(v;-, vy, ) in the graph
g2, which are begins from v;- and ends to v,,-, are mapped with the multivalued function pm.

Definition 13
pm :=p(vy,v,) = {pj(vy, vn)}

91 € Gin and 9> € Gin

14
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p(vl ,Un) - gl
pv =V > P(V;)

pv(vy) i= vy V- €V,
pv(vn) = Uy Uy €V,

pm(p(vy,v)) = {pj(vy, )| p;(v1,vn) S g2}

In path morphism, the vertices and edges between the initial vertex v; and the terminal vertex
v, inp(vy,v, ) in g, do not need to be mapped. One path in g; can have any number of
mapped paths in g,.

Figure 2 shows an example of path morphism from path p(1,2) = (1,3,2) in graph g; to a
set of paths in graph g,.

There are pv(1) = 11 and pv(2) = 14,
then the mapping results are:

_( p(11,14) = (11,14)
pm(p(1,2)) = {p(11,14) = (11,12,13,14)

(1
- &
_) ( "
“
92

14)

Figure 2: A path morphism example
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The definition of walk morphism is formalized with a multivalued mapping function wm from
awalkin a graph to a set of walks in another graph. There are two graphs g; and g,, and there
is a walk w(vy,v,) in g;. The mapping function wv maps the initial vertex v; and the
terminal vertex v, of w(v,, v, ) to avertex v;- and a vertex v, in graph g,.There v;- and v,
are the initial vertex and terminal vertex in walks w; (vy-, vy,").

Definition 14
wm = W(U1 , Un) - {W] (Ulz , 'Un,)}

91 € Gin and ) € Gin
w(y,v,) € g1
wv =V, - PV,)

wu(vy) := vy vy €V,
wv(vy,) i= vy Uy EV,

wm(w(vy, v)) = {w; (w1, va)| wi(wrr, v) € go}

An example of walk morphism from a walk w;(1,2) = (1,3,2) in graph g, to a set of walks in
graph g, is shown in Figure 3. In this example, graph g, has a cycle, so the mapped walks in
g» have to be defined as the walks that include the same vertex maximal twice.

There are wv(1) = 11 and wv(2) = 14,
then the mapping results are:
w,(11,14) = (11,14)

wm(wy(1,2)) =4 w,(11,14) = (11,12,13,14)
w,(11,14) = (11,12,13,12,13,14)

(1
O
wm
_) ( 5
(1

92
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Figure 3: A walk morphism example

The weighting of a path is defined with the sum of the weights of the traversed vertices or
edges. The following definition represents the weight of a path by using the vertex weights
[14]. The function ct is a mapping function from vertices in a path to a set of labels A (see
Definition 3).

Definition 15
n
Py, 1)) = ) ct(v)
iz

p(vl 'vn) = (vl P ""vn)

ct :i={vy, v, v} 2 A

The weighting of a walk is defined the same as the weighting of a path, where the weights of
every traversed vertices or edges are summed. Definition 16 shows the weight of a walk by
using the vertex weights.

Definition 16

bWy v )= Y

i=

ct(v;)

wy,vp) = V1, i, V)

ct i={vy, v, v} 2 A

2.1.4 Graph search

The graph search or traversal can be used to compute various properties of graphs, like
reachability. This imitates a walk or path in the graph by following vertices. Some graph search
algorithms can explore multiple paths in parallel at the same time, whereby some are
sequential and search only one path at one time. The depth-first search (DFS) and breadth-
first search (BFS) are two graph search algorithms that can be applied to solve a variety of
graph search problems, such as finding all of the paths between two given vertices, or finding
the all paths from one given vertex to all other vertices in a given graph, finding all of the
shortest path from a given vertex to another, etc. DFS and BFS can be applied to directed and
undirected graphs.

The DFS in a directed graph is described as following [19]:

17
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Algorithm 1:
Depth-first search from a given vertex to another given vertex in a directed graph

1. Determine the vertices where the search begins and finishes. Mark beginning
vertex as visited.
2.  Expand all of the following vertices of the start vertex and save them in a stack.
3. Dequeuer the top vertex in the stack and examine it.
a. If the target vertex is found, cancel the search and deliver the result.
b. Otherwise enqueuer the following vertices that have not been discovered
in the stack, and mark this vertex as visited.
4.  If the stack is empty, return “no result”.
5.  If the stack is not empty, repeat from step 2.

The BFS in a directed graph is described below [19]:

Algorithm 2:
Breadth-first search from a given vertex to another given vertex in a directed graph

1. Determine the vertices where the search begins and finishes. Mark the beginning
vertex as visited and save it in a queue.
2. Dequeuer a vertex from start of the queue and examine it.
a. If the target vertex is found, cancel the search and deliver the result.
b. Otherwise enqueuer the following vertices that have not been discovered
to the end of the queue, and mark this vertex as visited.
3. If the stack is empty, return “no result”.
If the stack is not empty, repeat from step 2.

DFS: (1,2,3,4,5,6,7)
BFS: (1,4,2,7,3,5,6)

Figure 4: An example of DFS and BFS in a directed graph
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Figure 4 shows an example of DFS and BFS traversing in a directed graph. The given initial
vertex is vertex 1. The traversing result using DFS is a scheduling of vertices in (1,2,3,4,5,6,7),
and using BFS is a scheduling of vertices in (1,4,2,7,3,5,6).

2.2 Optimization problem

The optimization problem in mathematics or computer science means problems finding the
best or sub-best solutions from all feasible solutions.

“Optimization is a mathematical discipline that concerns the finding of the extreme
(minima and maxima) of numbers, functions, or systems. The great ancient
philosophers and mathematicians created its foundations by defining the optimum
(as an extreme, maximum, or minimum) over several fundamental domains such as
numbers, geometrical shapes optics, physics, astronomy, the quality of human life
and state government, and several others.” [20]

The origin of the definition of the optimization problem is undoubtedly found in Greece from
569 BC to 475 BC. Since then to now, many understandings, methods, and theories have been
developed, like linear programming, non-linear programming, dynamic programming,
stochastic approximation, direct search methods, evolutionary programming, differential
evolution, etc. [20]. The local optimal problem is defined as the optimization problem, where
the solutions are finite [21]. A general constrained optimization problem is defined in the work
of Tasgetiren and Suganthan [22] as follows.

P is a constrained optimization problem. The function f(x) is the objective function. There
are two constraints: the inequality constraints are represented with function r;(x) < 0, and
the equality constraints are represented with function h; (x)=0.

Definition 17
P := min f(x)
subject to
r;(x) <0, fori=1,..,q
hj(x) =0, forj=q+1,..,m
f(x):= R* >R

Ti(X) <0
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The shortest path problem

The shortest path problem in graph theory is defined as the problem of finding a path between
two vertices such that the sum of the “labels” of its traversed vertices is minimized. This is a
special case of the optimization problem and it can be defined with the optimization
problem P, [23], [24].

The paths Paths, _; is a set of paths including all paths from v; to v; in a graph. The function
ct maps this set of paths to a set of labels B. The shortest path is defined as the path with the
minimized label.

Definition 18
Py, == min{ ct(p;)}

ct = {p} > B

Vp; € Paths,_;

2.3 Systems development models

System development models provide structure portions for different development phases to
organize the development processes. Thereby, these set of phases are assigned to
corresponding methods and techniques of the organization, and chained with workflow or
dataflow together.

Waterfall model

Requirement
analysis

+
| e —
: System design Waterfall model
A— %ﬂ
I |
| | N
I [
! [ |
| : | Integration
I I :

I
l ! . |
' : : | Testing
I

I

| | | ‘ 3
: I | I |
' : : : : Operation
I
I | I I :
v Yo v S v __ v

Figure 5: Waterfall model

20



Chapter 2 - Basics and Fundamentals

The waterfall model is a development model in which the phases are consecutively traversed
in line during system development. A new phase begins when the previous one has been
completed. The chained phases are represented in steps [25]. Figure 5 shows a waterfall
model with an iteration, in which the blocks represents the development phases and the thick
arrows show the execution sequence of the phases; for instance, after the execution of the
requirement analysis phase the phase of system design begins. The slim arrows show the
feedback paths from every phase to its preceding phases. If errors are detected at any phase,
these feedback paths allow this phase to be reworked, in which errors are committed to
correct the errors.

Phases in waterfall model:

® Requirement analysis: This phase is also called requirements engineering or
requirements specification. The customer’s stakeholders and needs are identified and
documented as requirements. The documentation of the requirements is generally
made in a standard form that is easy to analyse and can be coordinated with the
customer’s stakeholders and needs.

® System design: This phase is also referred to as design or architectural design. The
large systems are divided into subsystems. The requirements are specified according
to the system architecture. The system basics and their relationships are identified and
documented.

® |mplementation: The systems are implemented with hardware and software according
to the system design, which is documented in the previous phase.

® [ntegration: The implementation units or subsystems will be integrated together if the
system has multiple subsystems.

® Testing: The interaction of the subsystems and the integrated system will be tested. It
checks whether the implementation has correct system specification.

® OQOperation (or Installation): The system will be installed and taken into operation. This
operation often involves maintaining the system and correcting errors in the running
system.

In practice, the phases are often performed in parallel and iterative, but these are very costly.
The phases are chained together and the impacts from one phase can be delivered to its
following phases. For example, the changes of requirements have an impact on the
architecture or structure of the system design, due to high costs of system implementation.

Phased implementation model

In order to reduce the risks during the replacement of an old system, the new system can be
implemented in a phased manner. The old system does not need to stop completely; rather
the new system is gradually replacing parts of the old system. In comparison with a parallel
running model, the phased implementation does not take a lot of extra time and high costs
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for the parallel running of a new and old system at the same time. In comparison with a direct
changeover model, it keeps a part of the old system to act as a back-up if anything goes wrong
during the phased implementation. However, sometimes a direct changeover is the only way
to implement a new system.

Prototyping model

A new system is first trailed in one part of a new system on an intermediary trial system. Once
the intermediary trial system is running successfully, the new one can be introduced to all of
the system. The advantages are apparent: in the intermediary trial system the users can get
used to the new system and the new features can also be fully trailed. The existing interfaces
and modules on the intermediary trial system provide an easier configuration and integration
for system evolution. If something goes wrong with the now features, this only affects part of
system, and prompts the need to go back to reengineer the features. Another disadvantage is
the high costs and extra time [26].

2.4 Model-driven development

Today, model-driven development is generally accepted as an important method enabler to
cope with complex system development. It leverages graphical models and components so
that users can visually construct complex system architecture.

2.4.1 System modeling languages

The system modeling language is a modeling language that can be used to express systems in
a structure that is defined by a consistent set of rules. An example of system modeling
language is unified modeling language (UML) [27] [28].

2.4.1.1 Process-oriented modeling

The process-oriented modeling is defined to help to analyse and design business or production
processes. The main goal is to identify the strategic processes according to the system
development requirements. Usually process-oriented modeling is described with formal
graphical and textual representations. A process-oriented model comprises process model
elements and flows and it understood to mean a distinct arrangement of model elements that
are related with flows to one another.

e Process model element: A process model element is defined as an agent of a set of
objects and it comprises several activities. Every process model element has the
defined input and output, which can be machinery materials, product, manpower,
energy, signal or information.

o Flow: The process model elements are chained together with the flows, which express
the connections between processes and can be categorized into different types [29].
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Value stream mapping (VSM) is a process-oriented modeling method for analysing the current
status and designing a targeted status and it is described with notation modeling language.
VSM is a central instrument of lean management, which deals with the visualization of value
streams in particular. The main field of application of VSM is the flow production with the
original system and low variations in the automotive industry. The central modeling element
of VSM is the graphic notation for mapping process and flows of material and information.
The notation is defined to model the central production control and various Kanban species
[30] [31].

The integrated modeling of material and information flow is an important advantage of VSM.
At the same time, the status changes can be very well represented. In this thesis, VSM is used
to model the existing status and targeted status of a LL-CPS and it determines the evolution
requirements during its managed evolution. More details about this modeling method will be
introduced in section 4.1.2. Figure 6 shows an example of a VSM model [32].
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Figure 6: An example of a VSM model

2.4.1.2 Component-oriented modeling

The architecture modeling used for the system development, is resorted to the architectural
principles and design alternatives. Taking into account the complexity of system
decomposition in vertical, component-oriented modeling can reduce complexity by
simplifying and strict interface specifications by assembling strongly encapsulated modeling
entities, which are called components. Reuse of components can be maximized by finding the

23



Chapter 2 - Basics and Fundamentals

guarantees on implementation of the given components. These component models are also
called models [33] [34]. The Object Management Group (OMG) announced the systems
modeling language (OMG SysML) to support the specification, analysis, design, verification
and validation of complex systems. Two important component-oriented modeling languages
in OMG SysML are introduced in the following.

e Block definition diagram (BDD): It provides a black box representation of a system. The
hierarchies between components in a system are represented by main block and its
composite blocks. A BDD is a graphical modeling language of OMG SysML, in which the
blocks represent the functions or components and are connected by lines describing
the relationships between the blocks. This modeling language is heavily used in
engineering for hardware design, software design, electronic design, etc. Figure 7
shows an example of a block definition diagram [35]. In this example, the main block
represents a RobotDomain and is comprises the composite blocks: Driver, Robot,
PowerSource, Platform and Load.

bdd [Package] Structure [ RobotCiomain BOD ] I

«hlock:
RobotDomain

~dr L ~rokb ~Ioadl
<zhlocks: =hblocks =hlocks
DOriver Robot Load
-PE L -pt |
zblock: zblock:s
PowerSource Platform

Figure 7: An example of a block definition diagram for a robot domain

e Internal block diagram (IBD): The IBD provides the internal view of a system block, and
it is usually instantiated from the block definition diagram to represent the assembly
of all blocks within the main block. These composite blocks are assembled through
ports/interfaces and connectors. The ports/interfaces of the main block are all
associated with ports/interfaces of the internal blocks via connectors. Figure 8
illustrates an example of the RobotDomain block with an IBD [35].

In this thesis, VSM and IBD are used to model the managed evolution of LL-CPSs. More details
and examples about these two modeling methods will be introduced in chapters 3 and 4.
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ibd [Block] RobotDamain [ RobotDomain IBD | J

rob : Robot
dr : Driver i
‘ I ¢ controlcma cantrolin 'DadE
= it
’ ps : PowerSource # i MechEnergyFlow
i 4’—|" povwerlF | R
s ElecEnergyFlow [ mountiF

I

MechEnergyFlow:

L+ T
pf : Platfor

Figure 8: An example of an internal block diagram foe the RobotDomain block

2.4.2 Metamodeling

The object management group has defined a standard four-layer metamodeling architecture,
which is called the meta object facility (MOF). It provides a standard description for the
hierarchy of modeling in four layers.

M3 layer (MOF Metametamodel)

Class

7 S
; A N
/ ! \,
; ! N
! N
{ .

<instanggOf> <instanceOf>  <instanceOf>

M2 layer (UML Metamodely’ i
Operation Class Instance
R 7 w
<instz;bce0f> <instar)éleOf> <instarice0f>
M1 layer (Model) 5
\ Car :Car

o' StartEngine():void

N

<instamceOf>
MO layer (Instances)

aCar

Figure 9: Am example of OMG’s four-layer metamodel architecture
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The first layer provides an instances layer named the MO layer. At the MO layer, there is the
running system in which the real instances exist.

The M1 layer is model layer and it contains models, for example, a UML model of a real car.
Accordingly, the real car is an instance of car model. At the M1 layer, all categorizations or
classifications of instances at the MO layer are represented and designed.

The M2 layer contains the model of the model of an instance, which is also called a
metamodel. A metamodel is described as an abstractive syntax to determine the structure
and meaning of a model at the M1 layer.

The model at the M3 layer is the model of model of model of an instance. Indeed, this layer is
the top layer of the four-layer modeling architecture [36], [37].

Figure 9 shows an example of the OMG defined four-layer metamodel architecture from UML
[38]. In this example, a real instance of car exists at the MO layer. At the M1 layer, this real
instance is modelled with a car model using UML. The object “: Car” at the M1 layer represents
a car object and is abstracted to a instance at the M2 layer. The car model is abstracted to
Operation and Class at the UML metamodel layer. They are the instances of the
Metametamodel Class at the M3 layer.

2.4.3 Mathematical description of models

For a formal schematic representation, any network structure can be mathematically modeled
as a graph [8]. A model m, which represents an integrated system in a network structure, is
formed with a directed connected graph structure (see Definition 1).

Definition 19
m: = (ME, A, beg ,end)

beg := A - ME
end:= A-> ME

A= ME X ME
meG
fm}=McaG

A model comprises a set of model elements ME and a set of relation elements A. The
functions beg and end combine all model and relation elements together to an integrated
system. Every model has an identifier. The ID of a relation element is represented with its
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beginning model element and target model element. The model elements and relation
elements can be continually specified by different types, processes or functions. These
characters of elements are understood as the description information, which can be formed
with a key-value structure. A set of models {m;} is represented by M.

Another representation for a model m is using a set of model elements.

Definition 20
m: = {ME}

2.4.4 Model transformation

The model transformation is a basic method of model-driven architecture (MDA) [39]. There
are two important model transformations: bidirectional model transformation and
unidirectional model transformation.

2.4.4.1 Bidirectional model transformation

A bidirectional model transformation is described with a one—to-one mapping relationship
between one model on a modeling domain and a model on another modeling domain. This
model transformation can be used to keep the model consistency and it allows the
transformation between a concrete model and an abstract model. Stevens [40] represents
the bijection as a special case of bidirectional transformation, where the source elements
contain the same information as the target elements. In Stevens’ example, a bidirectional
model transformation takes place between UML activity diagrams and Petri net models.

Read color ——» Test number :
I

\ .
~ Domain C Model ¢ ~

~

—_—— e, — ——— — — — — e ——_— e —— — — — —

Figure 10: An example of bidirectional model transformation

A bidirectional model transformation is defined with a mapping relationship b, where A is a
domain including a set of models, and C is another domain including a set of models.
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Definition 21
b=A4A e C

In Figure 10, model a in domain A has a bidirectional transformed model c in domain C. This
transformation can be understood as the projection of one model in a domain into another
domain.

2.4.4.2 Unidirectional model transformation

The unidirectional model transformation is a refinement mapping and is defined as a mapping
relationship of models from one modeling level to another. Czarnecki and Helsen [41]
proposed a possible taxonomy for the classification of several existing and proposed model
transformation approaches, whereby most of these approaches are used for unidirectional
model transformation. A unidirectional model transformation is formalized as a mapping
relationship u, where A is its domain and B is its codomain.

Definition 22
u=4 - B

Figure 11 shows an example of unidirectional model transformation. Model a in domain A is
transformed to model b in domain B. In addition, a bidirectional model transformation can be
achieved using two opposite unidirectional one-to-one model transformations [41].

// Domain A Model a AN
| |
I |
| I
\ /
\ ! /
~N o ____ - __ -
'y
s T T T == _’ __________ ~
/ \

Figure 11: Examples of unidirectional model transformation
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The bidirectional and unidirectional model transformations are in essence the
transformations for model elements and relation elements from one model to another model,
which will be introduced in chapter 4.

2.4.5 Model mapping

A unidirectional mapping function g represents a mapping relationship from a model to
another model, where A is its domain comprising a set of models and D is its codomain
comprising a set of models.

Definition 23
q = A-> D

Figure 12 shows an example of model mapping. The mapping function g maps the model a’ in
domain A to model d in domain D.

Figure 12: An example of model mapping

The model mapping is essentially the mappings for model elements and relation elements
from one model to another, which will be introduced in chapter 4.

2.4.6 Operation of models

The operation of models is used to represent the relationship between models or to create
new models from the initial ones. Models m; and m, are two modelsin M (see Definition 19).
The operator “<” represents that model m, is a sub-model in model m;.
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Definition 24

m; €M and m, €M
if

ME, € ME; ME, # @
A, © Ay

beg, :=begy |a,- Mk,

end, = ends |4, mE,
then

ngml

The models union of two models m; and m, is represents with an operator “@”.The initial
models are two sub-models of the new model.

Definition 25

m3 == ml @mz
ME3 :MEl UMEZ
A3 =A1 UAZ

begs :=beg | a,ua,~ME, uME,
end; :=end |A1UA2—>ME1 UME,

mq Sm3
m, < ms

The models difference for one graph comparing with another is represented by an operator
©”. In this example, model m, is a sub-model of model m;.

Definition 26

my =m; ©m,
ME, = ME; \ ME,
Ay =4y \Az

beg, :=begy |a,- ms,
end, :=end, |4, ug,

my < my
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3 Problem Statement and Analysis with Example

Content

3.1 A sample of LL-CPS: A conveyor system with ASRS
3.1.1 Process-oriented description
3.1.1.1 Process-oriented structure
3.1.1.2 Processes description

3.1.2 Component-oriented description
3.1.2.1 Interfaces specification
3.1.2.2 System decomposition

3.2 Managed evolution scenario of LL-CPS
3.2.1 Problems of the ongoing LL-CPS
3.2.2 The targeted status of this LL-CPS

3.3 State of the art and existing approaches for managed evolution of LL-CPSs
3.3.1 Cyber physical system modeling
3.3.2 Formal modeling of system evolution
3.3.3 Modeling and optimizing the costs of reconstruction

3.4 Research questions of this thesis

The aim of this chapter is to ascertain the central problems during managed evolution of LL-
CPS. First a conveyor system in an auto manufactory factory as the application example will
be introduced in section 3.1. This system is a classical LL-CPS.

The process-oriented modeling method VSM introduced in the previous chapter models the
system structure and working processes of this conveyor system from the perspective of
process design. On the other hand, the component-oriented modeling method IBD specifies
the system hierarchy and interface specification of this conveyor system from the perspective
of implementation plan. The existing status of this conveyor system is modeled by using of
both modeling methods in section 3.1.1 and 3.1.2.

In order to analyse the problems during the managed evolution of a LL-CPS, the targeted
status of this conveyor system is clearly defined using a VSM model in section 3.2. Section 3.3
provides an overview of the state of the art regarding the existing approaches supporting the
development of the LL-CPS from the existing status to targeted status. Observing the problem
analysis and state of the art of managed evolution of LL-CPS, the final section of this chapter
will provide a summary of all the main research questions that will be particularly discussed
and solved in the following chapters.
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3.1 A sample of LL-CPS: A conveyor system with ASRS

In an automobile factory, a conveyor system with an automated storage and retrieval system
warehouse (ASRS) is understood as a LL-CPS that comprises mechanics, sensors, hardware and
software. This system chains the different manufacturing processes together to an integrated
production system, e.g. welding, injection modeling, sub-assembly/assembly and painting and
dry system. For the intralogistics in the factory, this conveyor system is the key part and has a
long life cycle. Figure 13 shows the conveyor system with ASRS as the core part in an
automobile factory.

This conveyor system with ASRS is a typical sample of LL-CPS, whereby people, machines, and
products exchange information with each other to accomplish the conveyor tasks together.

Suppliers Inspection

W %
Auto Storage and
Welding @ Conveyor system <):> Retrieving

Warehouse
[
Injection @ @ % Painting and

molding Drying System

Sub-Assembly/
Assembly

Figure 13: A conveyor system with ASRS in an automobile factory

A laboratory model of this conveyor system with ASRS is created as a substitution of the real
factory to clearly define this LL-CPS and analyse the problems during its evolution. This
laboratory model contains a conveyor system model and an auto storage and retrieving
warehouse model. The conveyor system model is located between the warehouse model and
the other CPSs, e.g. painting and dry system. The warehouse model is applied as a storage of
the wares, before and after they go into the manufacturing processes (See Figure 14). The
conveyor system model comprises four conveyor belts, a buffer belt and sensors, etc. The
ARAS comprises a warehouse and a gripper robot. The automated parts of this laboratory
model are controlled through two industrial programmable logic controllers (PLC) of Siemens.
They connect to each other over the Ethernet to ensure the safety and reliability of the
connection. The coordinated tasks between the sensors, actors, warehouse, four conveyor
belts, and a buffer belt are controlled using these two PLCs. A computer is used as a human-
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machine-interface (HMI). More detailed information on the system specification will be
introduced in section 3.1.2.

Figure 14: A laboratory model of a Conveyor system with ASRS as a LL-CPS sample

In practice, a LL-CPS is typically described and analysed by using multi-domain and multi-level
models, where each model focuses on a fixed set of concerns on the system. This is conducive
to system planners and engineers to understand a LL-CPS better and faster from different
disciplines. Each modeling domain gives prominence to certain features and focuses on
particular attributes.

VSM model IBD model

The laboratory model of a LL-CPS

Figure 15: A LL-CPS modeled with VSM and IBD

In Figure 15, there are two modeling methods that describe this LL-CPS with two different
modeling methods: the VSM and the IBD.
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3.1.1 Process-oriented description
3.1.1.1 Process-oriented structure

In this LL-CPS, the wares should be transported with the conveyor system from warehouse to
the hall for the painting and dry processes in accordance with the production plan for painting
and the dry hall. After the painting and dry processes, the wares will be transported back to
the warehouse and wait for the following manufacturing processes. Subsequently, the wares
will be stored in a warehouse in correct order. For example, the wares with different types,
sizes, materials or paint colors can be divided into different groups and stored in the
designated location or floor.

The whole process of this laboratory model is separated into six sub-processes, which are
chained step by step from the fist/leftmost process to the last/rightmost one. Every sub-
process contains the functions and tasks. Figure 16 shows the processes structure of this LL-

CPS sample.
LL-CPS :
Conveyor System with
Auto Storage and Retrieving Warehouse
Transport Retrieve
Extract Register the wares to Test
- Sort the wares to
from Color code Painting and wares
wares warehouse
warehouse to wares dry hall and number .
in correct order
get back

Figure 16: Processes structure of the LL-CPS sample

3.1.1.2 Processes description

Figure 17 shows a VSM model for this LL-CPS, which is defined as the existing status of this LL-
CPS. Every sub-process comprises different functions and tasks to accomplish the whole task
together.

e Extract:
The wares will be transported from the warehouse to the conveyor belt with a gripper
robot. This is a completely automated process and it is controlled by one PLC. This PLC
gives off the signal information, likes the wares, amount and locations, to schedule the
different functions and tasks in the extract process.
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Figure 17: A VSM model for the existing status of the conveyor system with ASRS

Register color:

The wares run on the conveyor belt and pass through a RFID read/write sensor. More
specifically, when a ware arrives at the RFID read/write sensor, the conveyor belt will
be stopped. At the same time, the RFID chip in the ware waits for an input from the
worker; for instance, the color information. The conveyor belt will restart once the
RFID chip receives correct information and then will be stopped again until the second
ware without any information arrives at this RFID read/write sensor. The worker gives
information by using a HMI of a computer. This information will be stored in this
computer and used for the other automated processes. The wares will continue to be
transported to the next conveyor belt after they leave the current belt. The register
color process is a semi-automatization process.

Painting color:

After the register color process, there is a buffer belt with a pusher, which is like a T-
Stab. This buffer belt bridges the conveyor belt to the painting and dry system. Each
ware which will be transported to the painting and dry hall must be pushed on the
buffer belt by using the pusher. The painting and dry system is another LL-CPS and it
is independent from this conveyor system with ASRS. The wares are taken sequentially
to the reserved painting machine. The painting processes will not be introduced in this
thesis. After the painting and dry process, all painted wares should be transported with
the same buffer belt again, but from the painting and dry system side to the conveyor
belt side.
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e Sort:
As a matter of course, the storage of painted wares must follow certain rules and
standards. For instance, according to their types, sizes, materials or paint colors, the
wares are able to be divided into different groups and then stored on the
corresponding floors in the warehouse. For this reason, a worker must stand by the
buffer belt and sort the wares by predefined sort order. For instance, the same color
wares are divided into the same group and sorted on the buffer belt. This is a manual
task.

e Test number:
This process is an automated process. By using a photoelectric sensor, the printed
wares will be counted according to the given number information from the worker in
the register color process. It is important to ensure that the actually stored quantity is
equal to the number of wares to be painted before. This photoelectric sensor can
count the wares number, but not read the color information.

e Retrieve:
Eventually, the wares will be retrieved through the gripper robot and then stored back
in a predefined location or floor in the warehouse.

3.1.2 Component-oriented description

The component-oriented modeling description focuses on a decomposition of the system into
its system structure, which is a central document for the creation of products. The entire
system is decomposed into segments and units and the relationships between these segments
and units are identified and represented. Thereby, the component-oriented modeling method
can support analysing the behavior in a large-scale system and guide the implementation of
the system design.

The component-oriented modeling methods BDD and IBD introduced in section 2.4.1.2 are
used to model the laboratory model of the conveyor system with ASRS.

3.1.2.1 Interfaces specification

The interfaces are first fine specified, which are declared within the system between the
segments and units or on the outside of the system. These specified interfaces serve a better
understanding of the system structure. Figure 18 shows the symbols of the specified interfaces
in this LL-CPS.
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Figure 18: Interfaces specification

e Electrical signal interface:
This interface is used to provide the connection for digital information from one
electronic device to another. The digital information can take the instructions of
functions or the results of the executed functions; for example a USB interface, PCI
express interface or the IEEE 1394.

e Software interface:
The software interfaces make the connection possible between software components
to exchange information, functions or methods. In this sprcification, the software
interfaces exist on software components or software components assembly.

e Constructive interface:
A constructive interface can be understood as an integration of devices. In this sample,
the four conveyor belts are constructed together to execute a corporate
transportation.

e Human machine interface:
A human machine interface is a special case of a user interface that connects human
to mechanical or information systems. The mechanical or information systems can be
the integrations of hardware, software, and mechanical components; for instance, a
monitor or an operating panel of PLC or an operating platform of a conveyor belt. The
HMI translates data or information from the machine side into human-readable visual
representations. In our sample, the worker gives information into the information
system by using the HMI of PC and reads the scheduling information from information
system with the HMI again.

e Execute interface:
The execute interface is a computer interface that provides connections between the
required component and the provided component. In this sample, the computer
hardware can provide the execution for the requirements of the connected software.
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e Material flow interface:
The material flow interfaces are defined as the transport channels for material. They
are often found between transport equipment or working processes. In our sample,
the worker can also be understood as a transport tool to chain the material flow
together.

3.1.2.2 System decomposition

The decomposition of a LL-CPS is introduced with a hierarchical structure. At the first level,
the LL-CPC is decomposed into two parts: a set of information systems (IS) and a set of process
systems (PS). The information system is the cyber part in the LL-CPS and the process system is
monitoring and controlling the physical processes by using sensors and actuators. These two
parts are connected, strongly associate with each other and work independently of one
another. They sense and influence the environment of the LL-CPS together (see Figure 19).

LL-CPS & -

Information system Process system

(1) (PS) Relevant environment factor

Figure 19: System decomposition of LL-CPS with BDD

Conveyor System
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LL-CPS

¢

SIEMENS SIMATIC
panel touch :
Information system
(1S)

Automated conveyor
system:
Process system
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Conveyor system environment :
Relevant environment factor

Figure 20: System decomposition of the conveyor system with ASRS with BDD
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The Figure 20 shows the decomposition of the conveyor system with ASRS as an example. The
conveyor system with ASRS is decomposed into a Siemens Simatic panel touch system as the
information system and an automated conveyer system as the process system. This LL-CPS is
closely linked with the conveyor system environment and exchanges the information or wares
through the system interfaces.

Figure 21 shows the interface specification between the conveyor system with ASRS and its
system environment with an IBD. The relevant environment factors comprises two important
parts: another CPSs and workers. In this sample, the painting and dry system is another LL-CPS
and it is connected with the conveyor system with ASRS using material flow interfaces and
connecters. Worker 1 sorts the wares running on the buffer belt in the conveyor system using
HMI and material flow interface. Worker 2 reads and gives the color information by using a
HMI to this LL-CPS.

Conveyor System -
with ASRS: AN ’\JljRelevant\;Vnovritgg r?’l-ent factor
LL-CPS \
\
\
\
N \\%
LT “ LT
Painting and Dry System : N Worker 1 :
Relevant environment factor Relevant environment factor

Figure 21: Interface specification between the conveyor system and its system environment
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Control System) Control System
System)
] | ] | ]

Figure 22: System decomposition of process system with BDD
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At the second level of this hierarchical structure, the information system and the process
system will be continually decomposed. A PS (see Figure 22) is divided into a set of control
systems (CS) and a set of mechanical systems (MS). The control system is continually
decomposed into a set of software of control system (CS-SW), a set of software assembly (CS-
SW Assembly), a set of hardware of control system (CS-HW) and a set of hardware assembly
(CS-HW Assembly). In a process system, the variables and information are shared between
components, which is different than in an information system.

With the laboratory model as an example, Figure 23 shows a BDD of the automated conveyor
system as the process system in LL-CPS. It comprises a SIEMENS Simatic PCS7 as a control
system and the conveyor models as a mechanical system.

Automated
conveyor system:
Process system
(PS)

¢

Siemens Simatic .
. Conveyor models :
PCS7 : .
Mechanical system
Control system (MS)
(CS)

Figure 23: BDD of process system in the sample

The mechanical system in this laboratory model comprises four conveyor belts, a buffer belt
and a warehouse, etc.

FRTTRTITRR ety |

Figure 24: Top view of the laboratory model
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Figure 24 shows the top view of the laboratory model, whereby the four conveyor belts are
chained in a cycle to transport the wares in circulation (turn counter clockwise in order
@@@@) Above conveyor belt @ there is a RFID read/write sensor, which can be used
to read/write production information from/into wares. There is a photoelectric sensor (light
barrier) over the conveyor belt @, which is used for detecting the wares when they get up
the conveyor belt @ The warehouse @ is constructed with conveyor belt @ and all of the
wares will be transported from the warehouse to the conveyor belt @ with a gripper robot
or phase reversal. The buffer belt @ with a pusher bridges the conveyor belt @ to other
CPSs.

Figure 25 illustrates the decomposition of the mechanical system in the laboratory model. This
mechanical system/mechanics is composed of three MS-HW assemblies: from left to right are
the ASRS warehouse, four conveyor belts, and one buffer belt. The ASRS warehouse comprises
warehouse and gripper robot. The four conveyor belts comprise belts, belt-motors, R/W
sensors and PH (photoelectric) sensors. Moreover, the buffer belt comprises belts, belt-
motors, and pushers.

Conveyor models :
Mechanical system

(MS)
¢
ASRS : C‘I’Bl‘fger Buffer Belt :
MS-HW ’ MS-HW
MS-HW
assembly assembly
assembly
| | 1 | |
Warehouse:| | Gripper: R/F Sensor:| | PH Sensor: Belt: Motor : Pusher :
MS-HW MS-HW MS-HW MS-HW MS-HW MS-HW MS-HW

Figure 25: BDD of the mechanical system in the sample

With an internal block diagram of the mechanical system, the combination of interfaces,
connectors, and components is represented in Figure 26.
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Figure 26: IBD of the mechanical system in the sample

The control system is the other important part in the process system in a LL-CPS. It manages,
commands or regulates the behavior of connected mechanical systems to implement some
tasks or processes. For sequential and combinational logic, the PLC is very necessary, like a
computer numerical control (CNC) and robot controllers (RC). Figure 27 shows a BDD for the
decomposition of control system in the laboratory model. This control system comprises
different CS-HW assemblies and CS-SW assemblies. The CS-HW assembly PLC hardware
platform comprises CS-HWs: from left to right are the data store, timer, program memory,
BUS, etc. The CS-SW assembly STEP 7 comprises CS-SWs: FC 10, OB1, etc.

| Siemens Simatic PCS7 : Control system(CS) |

t
| | |

. . Operating system:
| PLC hardware platfo;n : CS-HW assembly l ‘STEP 7: CS;Wassembly‘ CS-SW assembly
Data store : Timer: Program_ BUS : FC 10: OB 1:
CS-HW CS-HW o CS-HW cs-sw Cs-sW

Figure 27: BDD of control system in sample

In this laboratory model, the CS-HWs and CS-HW assemblies are integrated in two PLC
hardware platforms. The automation of this conveyor system with ASRS is under the control
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of these two Siemens Simatic PCS7 300 PLC systems [42]. Figure 28 shows a picture of one
integrated PLC hardware platform in the control system of the laboratory model.

il

]
()
'}
1]

Figure 28: Siemens Simatic PCS7 300: Hardware assembly in control system

The tasks in the programmable control system are not fulfilled only by combination of several
hardware components, which need the specific software programs. Figure 29 shows the IEC
61131-3 standards-based programming languages of PLC, which are classified by the language
characteristics. The structured text (ST in Siemens S7 called Structured Control Language: SCL)
and instruction list (IL) are two graphical languages. The function block diagram (FBD) and
ladder diagram/logic (LD) are two classical text languages. The sequential function chart (SFC
in Siemens S7 named Graph) is a mixed of the above two [43].

The ST is a high-level language, which is block structured. The function calls and variables are
defined by common elements. The syntax of this language elements is very similar to Pascal.
ST provides good mathematical operands for program logic. Figure 30 shows an example of
an FBD program in the laboratory model.

The IL is a low level language, which is mainly used for the logic connection between control
inputs and outputs. The main features of IL are that the operators have only one operand and
the syntax of the language is based on assembly language. This language provides a table view
that allows a lot of data to be well organized, updated and displayed. On the other side, for
large-scale and complex program IL is difficult to read.

Text language Graphical language

FDB

Figure 29: IEC 61131-3 standards-based programming languages of PLC

43



Chapter 3 - Problem Statement and Analysis with Example

// Ist-Werte
IF Werkstueckerkannt=trues THEN
IF zahlerRot_soll <> zahlerRot ist THEW
zahlerRot_ist:= zahlerRot_ist +1;
ELSIF zahlerGelb soll <> zahlerfGelb ist THEN
zahlerGelb_igt:= zahleIGelb_ist:; ;
ELSIF zahlerBlau ist<> zahlerBlau soll then

zahlerBlau_ist:= zahlerBlau_ist +1;
END IF;
1F (zahlerRot_ soll+zahlerGelb soll+zahlerBlau soll) = (zahlerRot ist+zahlerGelb ist+zahlerBlau ist) THEN
Produktionsziel erreicht:= true;
END IF;
END IF;

Figure 30: A ST program example

The FBD is a graphical language, which can describe the functions between the input variables
and output variables. The function is understood as a set of elementary blocks. The connection
lines are using to connect the input and output variables. This language is a very good fit for
electrical engineers. Figure 31 shows an example of FBD program in the laboratory model.

The LD represents the programs by using a graphical diagram, which is based on circuit
diagrams of relay logic hardware. This language has a clear logical relationships that provides
an easy structure to read. For a large-scale and complex program, LD is impractical and it has
no mathematical operands possible.
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Figure 31: A FDB program example
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The SFCis a graphical language, which can be used to program processes that can be split into
steps. The control steps are associated with each other by conditions of the handoffs in this
flow control. Between the control steps are transitions that are linked to input bits. The SFC s
described as a Petri net and it is easy for process design and error analysis. In normal
conditions, this programing language needs a strong program capacity.
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Figure 32: IBD of control system in sample
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Figure 32 illustrates the system decomposition of the control system in the laboratory model
with an IBD. The CS-HW assembly has two instances, which are two connected PLC hardware
platforms. They provide the executions of requirements or functions for their connected
software and software assemblies: Moreover, they control the linked mechanical components

to implement the software-established processes at the physical level.

The CS-SW assembly has two instances. They are the operating system and the STEP 7
programs, which comprise two assemblies: TS1_TS2_ASRS and TS3_TS4_RFID. These two
software assemblies comprise different function block, which are connected together as in a

function block diagram.
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Figure 33: System decomposition of Information system with BDD
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Figure 34: BDD of information system in sample
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An information system is decomposed into a set of software (IS-SW), a set of software
assembly (IS-SW Assembly), a set of hardware (IS-HW) and a set of hardware assembly (IS-HW
Assembly) (see Figure 33). They deal with each other in the collection, processing,
organization and storage of data and information. In the work of Boell and Cecez-Kecmanovic,
the “Information systems (IS) involve a variety of information technologies (IT) such as
computers, software, databases, communication systems, the Internet, mobile devices and
much more, to perform specific tasks, interact with and inform various actors in different
organizational or social contexts” [44]. Compared with the process system, the IS is not a real
time system and it has an open, dynamic and distributed system structure. Figure 34 shows a
BDD for the decomposition of the information system in the laboratory model. A Siemens
Simatic Panel Touch (see Figure 35) is modeled as the IS in this sample. It comprises a touchpad
and integrates other PC hardware components as two hardware assemblies, and an operating
system and an application software as two software assemblies. This IS has a human-machine
interface, which allows workers read and control the functions in this LL-CPS.

u.

Cf Wil e
: N

Figure 35: SIEMENS SIMATIC PANEL TOUCH

Application
software

System software

Figure 36: System software and application software relation

The IS-SWs and IS-SW assemblies in this sample are divided into two groups: operating system
software and application software. The operating system software manages the resources of
the computer hardware. The application software takes the functions, tasks and activities
from the user and implements them during the operating system software and then the

47



Chapter 3 - Problem Statement and Analysis with Example

hardware. Figure 36 shows the relationships between the user, application software,
(operating) system software and hardware. In Figure 37, an internal block diagram describes
the system combination of the IS in the laboratory model.
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Figure 37: IBD of information system in sample

Summary of system decomposition
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Figure 38: System structure for a LL-CPS
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The decomposed components in the LL-CPS are working either closely together on one task
or completely independently of each other. From the aspect of attributes, all of the software
components like the IS-SW, IS-SW assembly, CS-SW and CS-SW assembly, constitute the cyber
part of the LL-CPS. The IS-HW, IS-HW assembly, CS-HW, CS-HW assembly and MS-HW
constitute the physical part of the LL-CPS. On the other hand, the different software, hardware
and assemblies constitute the information system and process system in this LL-CPS (see
Figure 38). Figure 39 shows an IBD representing the decomposition of the conveyor system
with ASRS as a sample.
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Figure 39: System decomposition of the conveyor system with ASRS
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3.2 Managed evolution scenario of LL-CPS

3.2.1 Problems of the ongoing LL-CPS

A conveyor system with ASRS has been described and analysed as an ongoing LL-CPS. From
the perspective of production efficiency, this ongoing conveyor system with ASRS is not
perfect, because its production time can be reduced. The manual work of the workers in the
existing conveyor system could cause an increase in production time, and an automated
machine definitely has higher production efficiency since no thinking is needed by the
machine. Furthermore, the worker who stands by the buffer belt repeatedly performs the
same task (sort the wares), which increases the risk of making mistakes. In many factories, this
is @ main reason for the poor product quality.

A4

Existing LL-CPS Targeted LL-CPS

Figure 40: Managed evolution of a LL-CPS

In conclusion, this existing conveyor system with ASRS is not production time effective and
quality assurance. According to the problems of the existing LL-CPS, a targeted status of this
LL-CPS is defined (see Figure 40). In this thesis, the development of LL-CPS is managed, which
means that one system evolution step is defined from the existing status to the targeted status
of a LL-CPS. The targeted status must be cleanly defined.

3.2.2 The targeted status of this LL-CPS

The new work processes in the targeted status of this LL-CPS are based on the existing LL-CPS.
However, it is characterized by the high degree of the ability of automatization.

e Extract, register color and painting Color:
In the targeted status of this LL-CPS, the wares are taken out with the gripper robot
from the warehouse. After obtaining painting information, the wares will be
transported through the buffer belt to the painting and dry hall. These processes are
as same as the processes in the existing LL-CPS.
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e Read color:
In this process, there are some differences compared with the existing status. There is
no worker standing by the buffer belt to sort the wares that come back from the
painting hall. Instead of the worker, a new RFID read sensor is procured and installed
on the conveyor belt. It is used to read the color information from the wares.

e Test number:
This process is as same as the process test number in the existing status of this LL-CPS.
The retrieved wares will be counted by using a photoelectric sensor according to the
given information from the engineer in the register color process.

e Retrieve:
The wares will be retrieved through the gripper robot with the color information,
which is read with the RFID read sensor in the read color process, in the predefined
location or floor in the warehouse.

Targeted Status

Register Color Painting Retrieve to
Extract Color Read Color Test Number certain
.:} position
o 1 O 2
Position—.
Warehous Amount: 10 s/T Worker: Task: Sensor: Sensor: Warehous
troymom T, e
e Task: Extract Sensor: Color-Code Amount:
Color-Code: Painting Plan Task: Test Position: 2,1 (blau)
" Task: Read
F;’a\n}:.ang pla;\ Color Position: 2,2 (blau)
Fas - Register Task: Retrieve
olor
5s 5s 5 min 5min 5s 5s 5s
) Manual
Information Flow
10s 2s 5 mins 2s 2s 10s
\h Electronic
Information Flow
Material Flow 1 H . H
[’ Total timeline: 6 min 09s

Figure 41: Targeted status of this LL-CPS

Figure 41 describes the targeted status of this LL-CPS with a VSM model. During this
development, the manual sort work is removed, which can improve the ability of
automatization and the product quality. In addition, the production time is reduced from 8
minutes 7 seconds to 6 minutes 9 seconds.
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3.3 State of the art and existing approaches for managed
evolution of LL-CPSs

The problems during the evolution of CPS have been recognized by many researchers. In this
section, the important related works will be divided into three research fields: system
modeling, formal modeling of the system evolution and modeling and optimizing the cost of
reconfiguration.

3.3.1 Cyber physical system modeling

Deynet [45] specifies the cyber-physical system based on a module architecture in his diploma
thesis. By using of a pilot project in car as an example, Deynet introduced two methods for
the system specification: the interfaces specification and the perspective specification. The
interfaces specification emphasizes the description of the standardizing and specification of
the interface types between the modules. Once the interface types are determined, the types
must be kept, although the number of interfaces in the determined types can be continually
specified. Figure 42 show an example of the interfaces specification in Deynet’s work.

System
Extern Extern
Mobile phone Interfaces Hands-free car kit f—  Interfaces | Car
- [IRV" » -
»®e AT
Legends:
‘1 ) Electrical analog interface
Software mterface
‘ f", ) Electrical digital interface
@ Mechanical interface

Figure 42: The interfaces specification for a pilot system in car

All of the interfaces in this system are specified into four different types: the electrical analog
interface, the software interface, the electrical digital interface and the mechanical interface.
Such interfaces can be used for a further specification in a sub-system. For example, the
hands-free car kit is specified into a cradle, baseplate, ECU (A mounted box under the interior
trim of car) and microphone (see Figure 43).
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Hands-free car kit

Baseplate Microphone

Mobile phone

Figure 43: The interfaces specification for the Hands-free car kit segment

The perspective specification is focusing on the system specification at different system levels.
At the each level, there is its own individual view and interface types of the overall system.
The advantage of this specification is that each interface type appears only once in one system
level. This makes the documenting of the system specification very clear and compact. In
addition, the interdisciplinary specification is inevitable.

Hands-free car kit

&
Ecu-MikEP) Fah-Mik
&) 50) &4 i
Mobile phone t——Cra-Tel .va-Bav.-—l Baseplate }——E(.‘w@ds ECU Car
2@
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Legends: '? &

‘; Electrical analog interface

%9 Electromechanical interface

> Mechanical interface

Figure 44: The perspective specification for the Hands-free car kit segment in consideration only of mechanical,

electrical analog and electromechanical interfaces

Figure 44 shows a perspective specification for the hands-free car kit segment, in which the
specification only focuses on the mechanical, electrical analog and electromechanical
interfaces. The name of the line represents the two connecting blocks, like Cra-Tel for a cradle
and mobile phone (Telephone).

Bartelt et al. [46] defined a cyber-physical system based on the following characteristics. First,
a CPSis a system of systems can be decomposed into information systems and control systems.
Between them, there is an intelligent interface to join the different properties from the two
kinds of systems. Secondly, the information systems and control system are decomposed in
modular building blocks named components. The intelligent interface is also decomposed to
fine-grained intelligent interfaces to network the components between the information
system and control system. Figure 45 shows the decomposition of a CPS with smart interfaces.
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Figure 45: The CPS (decomposed) with smart interfaces

Larsen et al. [47] described an approach using the example of a small unmanned aerial vehicle
to model the cyber-physical systems and enable integration of multiple models and tools in a
consistent tool chain. A CPS is decomposed to the discrete-event (DE) models of
computational processes and the continuous-value and continuous-time (CT) formalisms of
physical engineering [48]. The VDM-RT (an extension of the Vienna Development Method’s
modelling language with features for object orientation, concurrency and real-time
computation, including the distribution of processes to virtual CPUs) is used to notate the DE
models and the 20-sim (a package for modelling and simulating complex physical systems) to
notate the CT models. The architecture of DE models is presented here using SysML. A co-
modeling framework Crescendo is introduced, whereby the interfaces between DE and CT
models identify the shared features of the tow constituent models. P. Larsen was working on
an integrated tool chain (INFO-CPS tool chain) to make a co-simulation of more than two
simulation tools possible. The CPS architecture on INFO-CPS is expressed using SysML, which
allows cyber and physical elements to be identified such that each of these elements
corresponds with a constituent model. However, there is a need for integrated development
methods that span form requirements through to analyzing the results of simulation. Another
need is for efficiently managing the traceability of design artefacts to analyze the changes
impact and evidence the dependability of CPS development.

In a cyber-physical system, the physical systems are inherently described by non-causal
continuous-time equations. On the other hand, the cyber-based information and
communication systems are based on the notion of causality and discrete-time semantics. In
another work of Simko et al. [49], the formalization of composition and interactions in the
two worlds is regarded as the new challenge for the model-based engineering of cyber-
physical system. A CPS-specific modeling language (CyPhyML) is developed and used to define
the structure und behavior of physical and computational components. It supports the non-
causal and causal modeling and facilitates hierarchical composition. Simko et al. formalized a
CyPhyML model as a tuple, which comprises a set of components, a set of component
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assemblies, a set of design elements, a union of the sets of ports, a containment function for
design elements and component assemblies, a port containment function, a set of power flow
and a set of information flow (see Figure 46). The union of the sets of ports is specified into
eight different types: the rotational mechanical power ports, the translational mechanical
power ports, the multi-body power ports, the hydraulic power ports, the thermal power ports,
the electrical power ports, the continuous time input signal ports and the continuous time
output signal ports. Furthermore, all of the power ports are encapsulated into a union and all
of the signal ports into another union. The power flow links any power ports together, and the
information flow links any signal ports together. Through the mathematically rigorous and
unambiguous formal specifications of CPS, the structural and behavioral specifications can be
written using the same modeling language, whereby both can be used for deductive reasoning.
The use of these formalizations for model checking, deductive reasoning and correctness
proofs will be a matter of future work of Simko.
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Figure 46: The generic modeling environment meta-model for the composition sub-language of CyPhyML

In general, a complex cyber-physical system is typically modeled from different disciplines for
developing and evaluating design alternatives within the context of formalisms that are
relevant to selected aspects of the system. Each modeling aspect highlights certain features
and occludes others to make analysis tractable and to focus on particular performance
attributes [50]. Bhave et al. introduced a base architecture of a CPS, which contains detail to
convey the nature of information and physical quantities flowing between components. A
guadrotor is modeled using multi-domain models, namely a physical model, software model,
hardware model and control model, which represent the same cyber-physical system from
the physical, software, hardware and control design domain perspectives. Figure 47 shows the
conceptual relationship between system models, views and the base architecture.
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Continuing with the case of a quadrotor, Bhave et al. built the encapsulation-based relation
Rf,‘x from model X to view Vy, and then the encapsulation/refinement-based relation REX
between view Iy and the base architecture of CPS. On the other hand, model Y can be also
transformed to the base architecture and with model X in the same level. The relation R{,‘X is
defined as a one-to-one or one-to-many maps. The relation jo_{ is defined as a combination
of one-to-many and many-to-one maps, although the many-to-many maps are not allowed.
In Bhave et al’s work, several research issues are not solved, including the rules to determine
the encapsulations, as well as the combination of multiple connectors into a single one. Finally,
the consistency during the transformation will need to be prescribed.
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Figure 47: The conceptual relationship between system models, views and the base architecture of CPS

In the book of Tiller [51], a modeling approach was introduced for the multi-domain models,
which are characterized by the fact that they have components belonging to different
engineering domains. Hereby, a conveyor belt system was modeled from the mechanical and
electrical domains. The mechanical domain is associated with the electronic domain during
the position and speed sensors. The effective inertia between the mechanical components
must be formulated for a combination of the two rigidly-connected inertias.
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3.3.2 Formal modeling of system evolution

A synergy between the systems modeling languages SysML and Modelica, which is a standard
for modeling the continuous dynamics of systems in terms of hybrid discrete-event and
differential algebraic equation systems, is the core work of Johnson et al. [52], in which the
use of a triple graph grammar (TGG) to keep a bi-directional mapping between these SysML
constructs and the corresponding Modelica models and create Modelica models from SysML
models is the highlight of this work (see Figure 48 [41] (as cited in [52])). The SysML models
and the Modelica models can be represented in an abstract syntax, which is defined by a
metamodel. These metamodels are represented as graphs. The mappings between the SysML
blocks and Modelica Classes are represented as a set of correspondence relationships. For
instance, at the syntax level, a SysML block (in the SysML Metamodel graph) is mapping to a
Modelica class (in the Modelica Metamodel graph) using a relationship entity block2class.
These correspondence relationships with source and target points compose to a
correspondence graph to represent the correspondences between SysML and Modelica
models. Through the code generation technology, the created Modelica models to code are
generated automatically.

While Johnson et al. defined formal meta-level mappings for relating the different modeling
representations SysML and Modelica, the changes of design during system engineering cannot
be traced from SysML to Modelica.

refers to refersto

Transformation Specification

conforms to executes conforms to

reads writes

Source Model TargetModel

Figure 48: Triple Graph Grammar Formalism

The work of Youness et al. [53] focused on the system development in a multi-modeling
domains. The models in different modeling domains need to be composed for validation of
partial models and synchronization tasks, which is an error-prone activity. Therefore, a
traceability mechanism and a formalization of the model composition operation and the
corresponding traceability were introduced to support a composition in multi-modeling
domains. The formalization of composition operation comprises the formalization of
composition operators, composition specification, composition rules, the execution of
composition specification, the composition rule activation, model elements in a sub-set, the
explicit and implicit rule call and target equivalence resolution. The formalization of model
composition traces comprises the formalization of traces structuring and traces generation.
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Nevertheless, the formalization of Youness et al. is not complete for every situation. For
example, the formalization can be extended to generate more complete traces. In addition,
the formalization of composition operation and model composition traces is tedious and
complex.

Padilla [54] introduced a middleware dedicated to CPS to manage the components
deployment and the dynamic reconfiguration on the software layer of a cyber physical system
(see Figure 49). When new models or the new services or new creation of new bindings
between the existing components need to be deployed, this middleware can propose an
adoption of the model@rumtime paradigm to the specific constraints of CPSs. The
model@rumtime is a model-based application to provide an automated synthesis to support
component interoperability. The models in CPS are abstracted to nodes, which need to be
dynamically reconfigured and redeployed to meet the CPS evolution and user preferences.
The following figure illustrates the architecture of reconfiguration on each node of the CPS.
First, new models are received to define the new targeted status of the CPS. Second, the set
of local adaptations are defined to reach this new status. Finally, the various local adaptations
are enacted on the node. The set of local adaptions comprise integrations of new pieces of
codes, instantiations or removing of existing components and channels used to bind them, or
reconfiguration of the value of any attribute.

New

old Model

Model

= B = rEe

oo Oo0o oo oo

Figure 49: The architecture of reconfiguration on each node of the CPS

However, this initial work only focuses on the software components deployment and the
dynamic reconfiguration on the software layer, whereas it does not consider the components
on the hardware layer of CPS.
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3.3.3 Modeling and optimizing the costs of reconstruction

Orabi et al. [55] developed a model for the reconstruction costs of damaged transportation
networks. In this model, the total reconstruction costs comprised the direct costs (DC) and
indirect cost (/C). The non-construction related costs, e.g. road user and business disruption,
are not included in this model. The direct cost DC includes the cost of resources for the
reconstruction and they are calculated using the equation below. The indirect cost /Cincludes
time-dependent costs.

Total reconstruction costs = DC + IC

The variable d,,, represents the duration of each project (m). The variable R;Y, represents the
resource requirements for the activity (x) of project (m). The variable ic,, is the indirect cost
unit rate for project (/m). The dc, is the unit cost of resource (7). The total number of projects
is expressed with M.

3.4 Research questions of this thesis
Concluding from the problem analysis and literature research, the main research questions

are formulated as follows.

Research question 1: How can a LL-CPS and its managed evolution be formally modelled and
described?

Research question 2: How can the changes in the managed evolution of a LL-CPS be formally
derived?

Research question 3: How can an approach be developed for the managed evolution of a LL-
CPS, in respect of a local minimum of the costs of reconstruction for implementation and the
controlled risks in ongoing operations?

Research question 4: How can the developed approach be demonstrated and evaluated?
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4 Formal Descriptions and Transformations of Managed
Evolution of LL-CPSs

Content

4.1 Formal description for VSM
4.1.1 Formal semantical foundation
4.1.2 Model-based description
4.1.3 Semantical mapping
4.1.4 Concrete modeling

4.2 Formal description for IBD
4.2.1 Formal semantical foundation
4.2.2 Model-based description
4.2.3 Semantical mapping
4.2.4 Concrete modeling

4.3 Formal mapping relation from VSM to IBD
4.3.1 Formal semantical foundation
4.3.2 Model-based description

4.4 Formal managed evolution of LL-CPSs
4.4.1 Formal semantical foundation
4.4.2 Model-based description

Before introducing an approach to reduce the development risks and ascertaining the local
optimal cost of reconstruction for the managed evolution of LL-CPSs, a formal description
mechanism will first be introduced to represent the managed evolution of LL-CPS and the
model transformations.

In mathematics, computer science, and linguistics, a formal description is an abstract
description that comprises a set of symbol, letters or tokens together with a set of
specification rules. The formal description can be textual or graphical, but is often a mix of
both [56]. This abstract description allows engineering systems by concentrating first on its
core functionalities while deferring secondary concerns like details of the final execution
platform. The details discarded earlier are retrieved later on at a lower level of abstraction or
in the instance.

In this formal description mechanism, the process-oriented modeling method VSM and the
component-oriented modeling method IBD, which have been introduced in chapter 3, are
applied as two different model-based descriptions to represent the same LL-CPSs on a
description layer. This description layer is named the model-based description layer. The
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formal description of all VSM models on a model-based description layer is represented with
a set of models My ¢y,. All IBD models are formed with a set of models M,gp (See Figure 50).
If all models on the model-based description layer are formed with a set M (see Definition 19),
then the My sy and M;pp are subsets of M and disjoint sets.

Mysy € M Migp € M Mysy N Mipp = @

VSM IBD

S/ ,’J /
Model-based 4 Mysuy Migp S/

description /

Figure 50: VSM and IBD models on model-based description layer

The VSM and IBD models can be formed on a uniform description layer named formal
semantical foundational layer. The models on this layer are formed with a uniform description:
a graph-structure. This set VSM graphs is formed with a set Gy ). The set of IBD graphs is
formed with a set G;p (See Figure 51). If all of the graphs on the formal semantical foundation
layer are formed with a set of models G;,, (see Definition 4), then the Gy and G;gp are
subsets of G;, and disjoint sets.
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Figure 51: VSM and IBD models on two description layers
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The managed evolution of a LL-CPS can be represented with a sequence of system statuses. If
an ongoing LL-CPS is defined as the existing status, its goal LL-CPS can be defined as its next
status: the targeted status of this LL-CPS. When the targeted status is implemented, it can be
used as a new existing status. Based on this new existing status, the next new LL-CPS can be
continually developed to the next targeted status. Therefore, the managed evolution process
of a LL-CPS can be expressed with a continual iteration from its existing status to its targeted
status (See Figure 52).

| | | New targeted system

= i | Targeted system
Y / :/ implemented to existing system

Existing system

Figure 52: The managed evolution of a LL-CPS

Figure 53 shows a cube model in a three-dimensional axes system, on which the LL-CPSs are
described with two modeling methods: VSM and IBD. Each modeling method has two
description layers: the model-based description layer and formal semantical foundation layer.
The managed evolutions of these LL-CPSs are described with the developments from their
existing statuses to targeted statuses. This cube model is divided into eight areas, each of
which represents the LL-CPSs by different description layers, modeling methods and statuses.
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Figure 53: Cube model with eight areas
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This cube model with eight areas provides a basic frame for the model transformation, model
derivation and system managed evolution on two description layers. A predicate is formed
with a Boolean-valued function status to represent the statuses of VSM and IBD models
during the managed evolution of LL-CPSs. A model m can be a VSM model or IBD model. The
function status maps this model to a status: existing or targeted. The existing status means
that this model is representing an ongoing system. The targeted status means that this model
is representing a targeted system.

Definition 27
status := (Mygspy U M;gp) — {existing, targeted}

m € Mygy U M;gp

All graphs for the ongoing LL-CPSs are formed with the Gyisting © Gin, and all models with
the set Mgyisting © M. All graphs for the targeted LL-CPSs are formed with the Gigrgetea <
Gin, and all models with the set Mg, geteq © M. The Gexisting and Gigrgetea are two disjoint
sets and the sets Myyisting and Migrgeteq are also disjoint.

Gexisting c Gin Mexisting cM

Gtargeted = Gin Mtargeted cM

Gexisting n Gtargeted =0
Mexisting n Mtargeted =0

All VSM models for the ongoing LL-CPSs can be formed with a set of models My gy existing- The
targeted statutes of these LL-CPSs are formed with a set of models Mygp rqrgeteqa- They are
two subsets of the set My sy, and disjoint sets on account of status. On the formal semantical
foundation layer, the ongoing LL-CPSs and their targeted statutes are formed with a set of
graphs Gysm existing and a set of graphs Gysuy targetea- These sets are disjoint and subsets of
the set of VSM graphs Gyspy.

MVSM,existing = Mexisting MVSM,targeted = Mtargeted
MVSM,existing: MVSM,targeted c MVSM
GVSM,existing c Gexisting GVSM,targeted c Gtargeted

GVSM,existing» GVSM,targeted c GVSM
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On the other hand, all IBD models for the same ongoing LL-CPSs are formed with a set of
models M;pp existing- The same targeted statutes of these LL-CPSs are formed with a set of
models M;gp targeting- These two sets are subsets of the set of IBD models M,z and they are
two disjoint sets on account of status. On the formal semantical foundation layer, they are
represented with the sets of graphs Gpp existing aNd Gipp targetea(See Figure 54). These sets
are subsets of the set of IBD graphs G;zp and disjoint sets on account of status.

MIBD,existing c Mexisting MIBD,targeted c Mtargeted
MIBD,existing: MIBD,targeted c MIBD

GIBD,existing c Gexisting GIBD,targeted c Gtargeted

GIBD,existingf GIBD,targeted c GIBD

VSM IBD
// GV&'M‘mrgele'd G!BD.mrgPteri / i
S
/ / '
- e T / H
Formal semantical ~ / ; p . ;
foundation ; GVS M,existing . : GlBD,existing ;
/ : . : e
g Mysmtargeted ! L Migp targeted ! S Targeted
’ P 4
Model-based | SR ; e : /
H /s : e H /
description / o b o b/ L
MVSM,extstmg D MIBD,esttmg e Existing

Vi

Figure 54: Models and graphs in cube model

There are transformations between the models on model-based description layer and the
graphs on the formal semantical foundation layer. They are described with a set of equivalent
transformation functions. They keep the models and graphs for the same LL-CPSs structurally
and behaviorally identical (See Figure 55). The transformation functions semv and conv will
be introduced in sections 4.1.3 and 4.1.4, the function semi will be introduced in section 4.2.3
and the function coni in section 4.2.4.
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VSM IBD
7
/i
/ /s :
Gysm targeted ’," Gigp targeted / !
/ // H
e A
Formal semantical ~ / e ;
foundation / GVSMJexisting GIBD,exist[ng a2 |
- ; 2 ; : | i
H : H semi | | coni ! ! semi | | coni ! : .
L | | A
! ] i ' 1 1 0
! ! ‘ ' ! | | 1 !
1 i ! L
I — = - L 7 e - ¥ T 4
; ! /Semv|fconv |l . semi [[coni u ; ! /
i ! / ' i !
: s IMysm targeted . Migp targeted ' ! J/ Targeted
: |/// : , E v/
Model-based | K-------- Jomo R | 4--- —/;V
description | ' ' v LS -
H MVSM,exisring ! M.’BD,exL‘stmg s Existing
H i

Figure 55: Model descriptions transformations between two description layers

The mapping relationship from a set of VSM graphs to a set of IBD graphs on the formal
semantical foundation layer is represented with a set of mapping functions {h;}. A set of
functions {hm;} represents the mapping relationship from a set of VSM models to a set of IBD
models on the model-based description layer in Figure 56. These mappings will be introduced

in section 4.3.
VSM IBD
/’ 1
thy’ :
Gysu targetea S ! > Gipptargeted i
!
—————————————————————— il Rl [ e iy’ 1
, b '
Formal semantical (he¥ ! :
k B
foundation GVSM,existing 7 GIBD,existing : E
. i
; | : T : ! | P : :
: | 1 semit cont : I H semi cont : | I
, 1 H ' 1 | ! 1 |
! 1 H H H \ ! ! i
1 ] 1 ' H 1 1 |
| I ' i ! ' | ! , i
i 1 semv||conv ! ! S semi || coni | 1
i 1 u H | u i 1
i | " H ' {hng} M i |
' | vSM,targeted ' — IBD,targeted H | Targeted
! 1 ' Vo ! 1
1 1l Itd !
Model-based ek | ittt TV e L ————————— 4---
! ’
description l [ ' {han;} L .
: MVSM,existing 7 > MIBD,existing Existing
: :

Figure 56: Mapping functions from VSM to IBD side

The managed evolution from the ongoing LL-CPSs to their targeted statuses is formed with a
set of unidirectional functions {f;} on the formal semantical foundation layer and a set of
unidirectional functions {fm;} on the model-based description layer (See Figure 57). Section
4.4 introduces the formalizations of these evolution functions.
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VSM IBD

Gysm targeted

A S 1137 S ] UIS A .
Formal semantical / /

> GJBD,existing

foundation GysM,existing

1
]
1
1
I
: . : |
semi | | coni ! | ! semi || coni | :
i 1 H i |
H 1 ! : 1
i ! : :
conv|] : semi ||coni | 1
v i {hn,r-'} H :
My sm.targeted : — M | Mip.targeted E ! Targeted
| . ' 1
m ] . m; '
Model-based —f--‘}—-----:----,—’ ------------ 7/:{1——’}-----'--—-
description v L v -
MVSM,existing — > MlBD,existing Existing

Figure 57: Evolution functions for managed evolution of LL-CPSs

Figure 58 summarizes all of the formal descriptions, model transformations, model mapping
relationships and managed evolution functions for the managed evolution of LL-CPSs in the
cube model and positions the sections in this chapter into this formal description mechanism.

VSM IBD

{h,»},,'(ll 3.1)

»  Gigptargetea (42.1)

4.1 1)GV.S'M.mrge!ed

_____ ié.&.lliﬁ}}/_____-_______,_":____.(44.145&%-----________|
Formal semantical {h-},(ﬁ.3.1 ) : 3
foundation (4.1.1)Gysm existing X * GIBp existing(4.2.1) :
§ E : semi || coni (4.1) | : 4.bpysemi || coni (4.2 4,:') E i
o IR I T
: :(4_1 3)ysemv||conv ¢(4_ 1.4) E : (4.2.3) semi coni(«ﬂzA) 5 :
; E 412) | Mysyargeted {hm[f (4.3.2) Migp targeted (4 2,25) E Targeted
Model-based : Vo i _//'[__f_"ll‘i L‘L-‘LZ_LE I _,:’.J ___________ 7/! mi} LQ.'LZ)_E 1
description v L hi(43.2) v .
P ! (4'1'2)MVSM,existing i > MIBD,existing(4-2-2) : Existing

[
1y

Figure 58: Positions of sections into modeling system
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4.1 Formal description for VSM

The VSM as a process-oriented modeling method is applied in this section to model the LL-
CPSs on the model-based description layer. All of these VSM models are formed as a set of
models My On the formal semantical foundation layer, they are formed as a set of graphs
Gysy - The models in My, and the graphs in Gygy model the same LL-CPSs. The
transformations between models and graphs are described with the functions semv and
conv (See Figure 59).

VSM
/. ya
/ S
/ a
G 2
. VSM / 1
Formal semantical ~ / / |
foundation / Vs
semv || conv
7
/
/
/ . /
i Ve M E //
Model-based | ya VSM ; S
description //
|/ ¥

Figure 59: Formal descriptions and descriptions transformation for VSM

4.1.1 Formal semantical foundation

The formal semantical foundation is the deep structure of a modeling, which is represented
by using a mathematical foundation, Metamodel, graphical representation and example in
this section.

4.1.1.1 Mathematical foundation

A graph gysy in the set Gygy is defined as a directed connected graph structure (see
Definition 4). It comprises a set of vertices Vy,5); and a set of edges Eysy. One edge links two
vertices together and can be represented by using a 2-tuple of its source vertex and target
vertex. The connect relation from the edge to its source vertex is represented with the
function srcygy, and to its target vertex is represented with the function tgty sy, . Every vertex
and edge has attributes to save information. These attributes are mappings from vertices and
edges to a key-value structure comprising a set of strings Keyysy and a set of strings
Valueysy. The mapping from the keys to values is represented with a hash function.
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Definition 28
vsm = Vysm Evsm, STCysy » tgtysm, attributesysy, Keyysy, Valueysy)

S ygeg o= S |EVSM_’ Vvsm
tgtVSM 3= tgt |EVSM_) Vvsm

Eysy = Vysm X Vysu
attributesysy: = (Vysy YU Eysy) = (Keyysy = Valueysy)

Keyysy = a set of strings
Valueysy = a set of strings

Gvsm € Gysy

Every vertex must have a unique identifier (ID). The ID of an edge comprises the IDs of its
source vertex and target vertex. There is an injective function id;y ¢y to map the identifiers of
every vertex and edge to strings.

Definition 29
idgysm = (Vysm U Eysy) — IDs

IDs == a set of strings

4.1.1.2 Metamodel

Every vertex can connect with any number of edges, although one edge must connect only
with two vertices: one source vertex and one target vertex. Every vertex and edge can have
any number of attributes or have not attribute if no attributes are given (see Figure 60).

9vsm
L ¢
* *

STCysm
VVSM EVSM

+1D 1 tgtysm * +1D

Property

attributsygy attributsysy

+ Keyysy

+ ValueVSM

Figure 60: A Metamodel for the formal semantical foundation of VSM model
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4.1.1.3 Graphical representation

The Table 1 shows the symbols, types, mathematical model element, Metamodel element and
description of any graph element in a gysy-

Mathematical model Metamodel L
Symbol Type Descriptions
element element
.
"‘E Vertex Vysu € Vysu Vosu Vertex in graph
:‘ Edge evsm € Eysu Evsu Edge in graph
Propert]
Attribut K S Val pery Attributes of vertices and
ributes eyVSM a ueVSM + Keypsy edges
+ Valueygy
Connect STC Connect relation for one
— . . STC 2 2VSM .
O relation begin vSM edge and its source vertex
Connect tat Connect relation for one
= . tgt t9tvsy :
— relation end Gtvsm edge and its target vertex

Table 1. Graphical representation of the formal semantical foundation of the VSM model

4.1.1.4 Example

Figure 61 illustrates a VSM graph g, in the set Gysy. Here, two edges and three vertices are
linked together as a directed connected graph structure. The id of any edge is expressed with
the id of its source vertex to the id of its target vertex. For instance, the edge (a,b) represents
a directed edge with the type “Input” from vertex a to vertex b. The attributes are attached
to every vertex and edge to save the description information, not only the type, but also the
other information like full name, time and costs, etc.

: Property

Type: Input

Ox o Wysm
- VYVSM . EVSM
‘Type: Push arrow ‘
: Property (c,b) : EVSM : Property
: Property

:Wosm

Type: Databox

: Property

Figure 61: An example for the formal semantical foundation of VSM model
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4.1.2 Model-based description

On the model-based description layer, a set of VSM models My, describe a set of LL-CPSs,
which is introduced by using a mathematical foundation, Metamodel, graphical
representation and example.

4.1.2.1 Mathematical foundation

Every VSM model mygy, in the set My is defined with an integrated system in a network
structure (see Definition 19) to describe an integrated LL-CPS. It comprises a set of model
elements MEy ), and a set of relation elements Ay s,,. They are combined together by using
the connection functions begysy and endygsy to an integrated LL-CPS. As a standard
modeling language, the description information of every model element and relation element
in VSM is standardly structured. It can be in textual and/or graphical form.

Definition 30
mysy:= (MEysy, Aysy, begysm » endysy)

be := be
Gvsm glAVSM_’ MEysm
endVSM B end |AVSM_) MEVSM

Aysy = MEygy X MEygy

Mysy € Mygsy

In VSM, the model elements and relation elements will be continually specified by different
types. The set of model elements MEy ), comprises a set of process elements Py, a set of

flow elements F5), and a set of comment elements Cygy,. They are disjoint sets. The Pygy,
comprises two disjoint sets PJif e and PJ;&O. The PLI9FeSS represents the set of model

elements of production and logistic processes in VSM. The PJ?A’:{O represents the set of model
elements of data processing in VSM.

MEysy = {Pysy U Fysi U Cysy}

e Process ', pInfo
PVSM T {PVSM U PVSM

VSM U Fysm

PProcess —
VSM U PProcess—shipment () pProcess—Cusu

Process—process * —
P p PProcess stock }
VSM VSM

Info ,__ Info—EDV - pInfo—control
PVSM T {PVSM UPVSM }

o EInfo - MInfo - Material
Fysm = {Fyaw © U Fyau U Fpsie
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Databox | Operator
C o { CVSM U CVSM
VSM ™ . Timeline—CVA Timeline—NVA ", ~Gosee
U Cysm U Cysm U Cysm

- In . out * owned
Aysy = {AVSM U Aysy U Aysy

Every flow element in the VSM model is imaged with directed flow, where the arrow shows

the flow direction. The set of flow elements Fy ), comprises the electronic information flows

. EInfo . . . Minfo . .
in set FVSMf , the manual information flows in set FVSMf and the material flows in set

FMaterial and they are disjoint sets. The set of comment elements Cygy comprises five

disjoint sets by different types. The set CP&{*P°% represents the comment elements in the
type of data box. The elements in the set Cobe' “*°" make explanatory notes on the model

element with the information about workers. The comment elements with type timeline CVA
in the set CFimeline=CVA are ysed to describe the value added times, as well as the elements
in the set CLimeline=NV4 for the non-value added times (NVA). The set CG%5¢%¢ represents a set

of comment elements with the type of go see. The set of relation elements Ay, comprises a

set of owned relation elements A9%/#¢?% and a set of the input relation elements A%, and a

set of output relation elements A%‘,ﬁ,. They are also disjoint sets.

There is a function to map the types of model elements and relation elements to strings, which
describe the type of the corresponding model and relation elements.

Definition 31
type = (MEysy U Aysy) — strings
( "Process" if x € P;g’;\‘;cess—procesg
"Data box" if x € CP&box
"Worker" if x € COPETater
"EDV" ifx € PVI;LICIO—EDV
"Production Control” if x € Pjas’ "7
"Inventory hedge" if x € PlroFess—stock
"Timeline — NVA" if x € Climtine-Nva
"Timeline — CVA" if x € Climline=Cva
Vx € (MEVSM V) AVSM) 3 type(x) = "External Shipment" if x € P‘/F;;Zcess—shipment
"Supplier" if x € PFLoress-cusu
"Go See" if x € CEosee
"Electronic Information arrow" if x € Ff;;;fo
"Manual Information arrow" if x € F‘,Agll\?f 0
"Material arrow” if x € Fjigterial
"Input" if x € Ay
"Output" if x € AQ¥%,
"Owned relation" if x € A9¥ned
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The IDs of every VSM model element and relation element are defined with an injective
function idyy ¢y - The ID of a relation element is represented with its beginning model element

and target model element.

Definition 32
idyysy = (MEysy U Aysy) — IDs

IDs = a set of strings

4.1.2.2 Metamodel

A VSM model my g, is formed with a metamodel in Figure 60, which describes not only the
system structure, but also the specifications of a VSM model by types.

Mysy
* , 1 *
| . \ . |
€9vsm
MEysy Aysu
+I1D +1D
endysy
1 * A
I
‘ ‘ Aysy
Prsu Cysm A0u
VSM
‘ | P AP
PPracess Info | Cpatabox FVSM
vSsM Brou
A A |_| ~Operator
PPrucess —process CVSM FMInfO
vsM Plnfo —EDV VSM
VSM
Gosee
" Cushi pEnfo
1 PJrgress —stoc P]/,;‘l[{/[o —control VoM
- C‘%rﬁeline —CVA
[ PProcess —shipment F%%erial
vsM L C]’/fstjnr/;eline —NVA

[— PPrncess —CuSu
VSM

Figure 62: A Metamodel for specification of VSM model by types

The specified model elements and relation elements in any model my 5, have to satisfy the
combination rules forming with metamodels in Figure 63 and Figure 64 to guarantee the
system integration. In this metamodel, the multiplicity describes the quantitative connection
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relationship. It is interpreted as a subset of the natural numbers. The 1 is {1}, the * is the set
of all natural numbers.

One connection relation element has only two connected model elements: one is its source
model element and the other is its target model element. Any process element can have any
number of relation elements. Any flow element can have maximal two relation elements (see
Figure 63).

! « endygy 1
Al Pysu

FVSM

« begvsy 1
AR Pysu

Figure 63: The Metamodel for connection relation in VSM model

An owned relation element in the set A9%7¢? links one comment element and its owner
element together. One process or flow element can have any number of comment elements,
although one comment element only allows belonging to one model element. The other
connection or owned relations are not allowed.

* 1
c 1 begysu 1 AOwned endysy
VSM VSM Pysy
*
C 1 begysu ! JOwned endysy
VSM VSM Fysu

Figure 64: A Metamodel for owned relation in VSM model

4.1.2.3 Graphical representation

The Table 2 shows the specified model elements and the relation elements in VSM by using
the symbol, type, mathematical model element, metamodel element and descriptions.

Mathematical Metamodel .
Symbol Type Descriptions
model element element
Process PProcess—process Pf’jmcess —process A proFess, Opera“on;
VSM VSM machine or department.
It goes under other model
I
‘ Databox elements and describe the
Data box clpatabox Cysm :
corresponding model
element.
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It represents a worker and

@) N Worker corerater C]?f;,mwr shows the number of
workers required to process.
Electronic/digital information
@ EDV PI;?I\f/IO_EDV P;;&a —EDV or dat.a for productior)
planning and production
control.
This box represents a central
Production Info—control production scheduling or
Control Frsu VM control department, person,

system or operation.

Inventory hedge

PProcess—stock
VSM

It represents a stock against
problems such as downtime,
to protect the system against
sudden fluctuations in
customer orders or system
failures.

B
b=

It shows non-value added

VSM
imeli

A . . TR Timeline —NVA
1 Timeline-NVA Climline-NVA Cvsm times (NVA).
ol Timeline-CVA Climline—cva ‘@ I(’E:i,/hA(;ws value added times
It represents the shipments
‘:D External pProcess—shipment pProcess —shipment ‘ from suppliers or to
Shipment VSsM vsM customers using external
transport
It represents the supplier
when in the upper left, and
@ Supplier Plrpcess—cusu Py —ewsu the customer when in the
upper right, the usual end
point for material
It represents the gathering of
O Go See Cogee ‘ Closee ‘ information through visual
means.
Electronic It represents electronic flow.
W Information FEmre EEmfo
arrow
This arrow shows general
Manual flow of information from
_— Information F%fj}f" memos, reports, or
arrow conversation. Frequency and
other notes may be relevant.
It represents the
m Material arrow FMaterial F¥aterial transportation of material
from one process to the next
process.
This represents the input
IZ:>[ Input Ay, ‘ A relation between the model
elements.
This represents the output
:’j> Output AQYL A%‘ﬁ,‘. relation between the model
elements.
This represents the owned
Owned relation AQ¥ned AQumed relation between the model

elements.

Table 2. The graphical representation for the model-based description of VSM
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4.1.2.4 Example

The Figure 65 illustrates a VSM model m, € My, which comprises one process element,
three flow elements and a number of comment elements. The process element sort links
conveyer belt 1, conveyer belt 2 and info 1 together as an integrated LL-CPS.

. pMinfo
Info 1: gy

ID:e
Input 2 Info 1 to Sort: A%,

Process

Sort: Byey _pT”’SS
ID: b
-:-:-:> O F:-:-:>
Materal

Conveyer belt 1: Fjiateral D-b3 Conveyer belt 2: Fgj
ID:a . powned ID: c
Input 1 Conveyer Owned 3 to Sort: Ayjy Output 1 Sort to
belt 1 to Sort Workers for Sort: CI‘/’SP;IWWT Conveyer belt 2

. pln
'AVSM :AOut

VsSM

Interface type: Inf & M
nterface type: 0 Owned 1 to Sort: Ag¥ned

Task: Sort

Data box of Sort: C2atabox
ID: bl

Owned 1 to Owned 1 to

.AOWned ,AOWned
Conveyer belt 1: 4vsm Owned Conveyer belt 2 - Avsm
Owned 2 to Sort : Aysy
5s 5s
2 mins
Timeline NVA of Conveyer belt 1 Timeline CVA of Sort Timeline NVA of Conveyer belt 1

. C[’f;"%eline —NVA

imeli . rTimeline —NVA
. CTlmelme —CVA : CVSM
* “VSM

ID: al ID: b2 ID: cl

Figure 65: An example for the model-based description of a VSM model

4.1.3 Semantical mapping

The VSM graphs on the formal semantical foundation layer are understood as the equivalent
descriptions of the VSM models on the model-based description layer. A semantical mapping
represents the transformation from VSM models to the equivalent descriptions in the graph-
structure. This transformation must keep that the VSM graphs are consistent with the VSM
models.

4.1.3.1 Mathematical foundation

A function semv is defined as a unidirectional bijective transformation function (see
Definition 22): one-to-one (injective) and onto (surjective). This function represents a
mapping relationship named semantical mapping from a set of models My, 5, to a set of graphs

GVSM .
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Definition 33
semv = Mygy = Gysy

The function semv is an equivalent mapping function for a model m in My, to a graph g in
Gysu, if it meet three requirements:

(Ymysy € Mysy) 3 {gvsm € Gysul semv(mysy) = gysm}

1. Elements identify: For any model m, in the set My, there exists a graph gy sy in the
set Gygy, Which satisfies the transformation function semv(mysy) = gysu- For any
model element me in model myg,,, exists a vertex v. The number of all model
elements in myg),; must be equal to the number of all vertices in gysy. The ID of vertex

v is mapped to the ID of model element me with a mapping function: semvid :=
{id} - {id}.

(Yme € MEygy) 3 (v € Vysy) A [MEysy| = [Vysul A semvid(idyysy(me))
= idgysm (V)

2. Structure identify: For any relation element a in mygy, there exists an edge e in gyspy-
The number of all relation elements in my sy, must be equal to the number of all edges
in gysy- The ID of the source vertex of e is mapped to the ID of the beginning model
element of a, and the ID of the target vertex of e is mapped to the ID of the ending
model element of a.

(Va € Aysy) 3 (e € Eysy) A |Aysul = |Eysul
A Semvid(idMVSM(begVSM(a))) = idGVSM(STCVSM(e))
A semvid (idyysy (endysy(a))) = idgysm (tgtysm(e))

3. Information identify: For any vertex or edge x in V53, and Ey gy, if its ID is mapped to
the ID of a model or relation element y, the attribute of x is assigned with the string
“Type” as its key and string type(y) in its value.

(Vy € (MEysy U Aysy) 3x € (Vysy U Eysy) A semvid(idyysu(y)) = idGVSM(x))
- (attributesygy (x)("Type") = type(y))

If model and relation elements have other description information, they can be saved
in the attributes of vertices or edges with the key-value structure too, for example the
information of name. The function 6 is a mapping function to map the model and
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relation elements to strings. A set of these functions is represented with {§;}. A
parameter s; represents a string and it is combined with the §; to a key-value structure
according to the index i in that s; as the key and §; as the value.

(Vy € (MEysy U Aysy) 3x € (Vysy U Eysy) A semvid(idyysy(¥)) = idgysu(x))
- (attributesysy (x)(s;) = 6;(y))

6i = (MEVSM V) AVSM) s StTingS

S; € Keyin
6;(y) € Value;,

4.1.3.2 Graphical representation

Table 3 shows a comparison between the model-based description of VSM and formal
semantical foundation of VSM by symbol, type and Metamodel element.

Model-based description of VSM Formal semantical foundation of VSM
Metamodel Metamodel
Symbol Type Sybol Type
¥ yp element Y P element
Process —process 3...:'
Process Brou 'E Vertex Wen
Databox f:..-'
Data box Cysm 'E Vertex Vysu
Operator ._"
@N Worker Cyon ]E Vertex Wm
info—EDV O
@ EDV Bosu E Vertex Vesm
Production O
3 - Vertex Wsu
Control VM 'E
Inventory . . -~
S5 —stoc b
A o Timeline —NVA )
N|—| Timeline-NVA Cys’ E Vertex Wsu
o Timeline —CVA O
e[ ] Timeline-CVA Cysy™™e 'E Vertex Vism
External Process —shipment 3':..-'
‘____D ) P Vertex Vosm
Shipment vsm 'E
Process —CuSu {7
( l L Supplier Prsu 'E Vertex Vosm
=
k) Go See ‘ Cf;&ee ‘ 'E Vertex Vysu
Electronic e ~
W Information Fvsﬂ,fo 'E Vertex Vvsu
arrow
Manual i N
. nfo
— = Information Fren 'E Vertex Vosu
arrow
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Figure 66 shows a graphical representation of the semantical mapping from a model in My ¢y,

Material Material !
m F Vertex Vesm
arrow v —
IID{ Input ‘ A E Edge Evsu
]:> Output AQHL E Edge Eysu
e | aw | =
— relation Aysiy &

Table 3. Comparison table for semantical mapping for VSM model

to a graphin Gygy.

Mysy
. , 1 .
I 1 * ]
begysu
I— ______ MEysy Aysu - _l
| +1D +1D I
end
| JAN 1 v . AN |
I I
I I
| Ao |
| | | |
: Pysu Cysm AP :
| AN AN — |
! | Aysi®
l Process Info [ Cx?s%abux F |
| Pysy FBrem VsM |
A A || ~Operator |
| |—{ pProcess —process Cusm FM[nfO |
| vsM plnfo—EDV VSM
VSM |
| cgie
| [ Process —stock Info —control FElnfo |
P, f
VSM Prou VSM |
| - C‘Z'}meline —CVA |
I )
| | P]Zrﬂz/)]cess —shipment ‘ F%%e”al |
L Timeline —NVA
| Cysu |
I I
I PProcess —CuSu
| VSM |
I I : I
| Information |
| g identify |
| attributsysy attributsygy |
| Property |
*
| + Keyysu |
| 1 + Valueysy Structure |
| Elements 0/1 0/1 1 identify |
: Identlfy 1 STcysy * :
______ > Vsm Eysm <K — -
1 tgtysm *
+ID +ID
*
o
9vsm

Figure 66: Graphical representation for semantical mapping of VSM model
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4.1.3.3 Example

Figure 67 illustrates a semantical mapping transformation form a VSM model m, € My, 5, to
a graph g, € Gysy-

: Property
. PProcess —process Type: Input
vsm (a,b): Eysy Vsm
ID:b Vysm
onveyer belt 1: Type: Material arrow
! o 0:b3 R (b3,b) | Type: Owned relation |
ID:a  |nput 1 Conveyer . powned : Property
el 1 10 Sort Owned 3 to Sort: A[:)SM . : EVSM
A Workers for Sort: C,, b7 "
s Aysm :VVSM
: Property
m, € MVSM Ix € GVSM

Figure 67: An example of semantical mapping for a VSM model

In Table 4, all model elements in m, are transformed to vertices in g,, and all relation

elements are transformed into edges. The types of model elements are transformed to
attributes in the corresponding vertices.

Conveyer belt 1 = v, and semvid(v,) = ID of Conveyer belt 1: a

Type ofm for Conveyer belt 1 — (Type: Material arrow) in v,

Process sort — v, and semvid(v,) =D of Process sort: b
Sort

Type of for process sort — (Type: Process) in vp3

Worker of Sort — v3 and ID of v, is mapped to the ID of Worker of Sort: b3

Type of 1 g process sort = (Type: worker) in vy

Input 1 Conveyer belt 1 to sort = (v,, vp) and ID of (v,, v;,) is mapped to the ID of Input 1 Conveyer belt
1 to sort: (a,b)

Type of Input 1 Conveyer belt 1 to sort = (Type: Input) in (v,, V)

Owned 3 to sort = (v,3, V) and ID of (v,3, V) is mapped to the ID of Owned 3 to sort: (b3,b)

Type of Owned 3 to sort = (Type: Owned relation) in (v3, Vp)

Table 4. Transformations of model/relation elements in a VSM model

4.1.4 Concrete modeling

The concrete modeling is defined as a transformation function conv from a set of graphs Gysy
to a set of models My gy,.
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4.1.4.1 Mathematical foundation

This function conv is a unidirectional bijective transformation function and instances every
graph in a set Gygy to VSM model in a set My, (see Definition 22).

Definition 34
conv = Gysy = Mysy

Like with the transformation function semv, the function conv is an equivalent mapping
function if it meet three requirements: elements identify, structure identify and information
identify.

(Ygvsm € Gysy) 3 {mysy € Mysy| conv(gysy) = mysy}

1. Elements identify: For any graph gys) in the set Gy, there exists a model my gy, in
the set Mgy, which satisfies the transformation function conv(gysy) = mygy. For
any vertex v in graph gysy, there exists a model element me. The number of all
vertices in gysy must be equal to the number of all model elements in mys,. The ID
of model element me must be mapped to the ID of vertex v with a mapping function:
convid := {id} - {id}.

(Vv € Vysi)3 (me € MEysy) A [Vysul = IMEygpl
A convid (idgysy (V) = idyysy(me)

2. Structure identify: For any edge e in Ey gy, there exists a relation element a in Aygy,.
The number of all relation elements in my s, must be equal to the number of all edges
in gysy- The ID of the beginning model element of a is mapped to the ID of the source
vertex of e, and the ID of the ending model element of a is mapped to the ID of the
target vertex of e.

(Ve € Eysy) 3 (a € Aysy) A |Aysyl = |Eysul A convid(idgysy (v)) = idyysy(me)
A Convid(idGVSM(SrCVSM(e))) = idMVSM(begVSM(a))

A convid(idgysm (tgtVSM (9))) = idyysm (endVSM (a))

3. Information identify: For any model or relation element y, if its ID is mapped to the ID
of a vertex or edge x in graph gy sy, then the string in the attribute with the key “Type”
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of this vertex or edge x will be reformed and assigned to the string of type(y) in the
corresponding model or relation element y.

((Vx € Vysm U Eysydy € MEygy U Aysy) A convid(idgysy (%)) = idyysm (J’))
- (attributesysy (x)("Type") = type(y))

The other attributes in vertices and edges can be transformed to the description
information of model and relation elements like the type information.

((Vx € Vysu U Eysydy € MEygy U Aysy) A convid (idgysy (x)) = idMVSM(y))
- (attributesysy (x)(s;) = 6;(y))

8; == (MEygp U Aysy) — Strings

6;(y) € Value;,
S; € Keyin

4.1.4.2 Graphical representation

Table 5 shows a graphical representation of concrete modeling, which can be understood as
an inverse transformation of semantical mapping.

F I ical f i
CHEL U RIIUD eTlEE e Model-based description of VSM

of VSM
Metamodel Metamodel
| T | T
50 ype element Sfee ype element
'E Vertex Virsu o7 .or Model element MEygy

— e
}_‘ Edge Eysu lil or Relation element Aygy

Table 5. Comparison table for concrete modeling for VSM graph

The graphical representation for concrete modeling in Figure 68 shows how a VSM graph is
transformed to a VSM model.

82



Chapter 4 - Formal Descriptions and Transformations of Managed Evolution of LL-CPSs

mysm
. , 1 .
I |
e > > ' begvsu ) <kt — —
r M EVSM AVSM a
| |
+ID +1D
l endysy |
| A 1 . JAN |
| |
| |
I ‘ ‘ A%M |
| |
l I VSM CVSM A%{,, |
A AN |
N
rocess njyo

| Pysu Froy vsM |

A || ~Operator
| || pProcess —process Cysu FMlnfo |
I vsM plnfo—EDV VSM |

VsM
Gosee
! - - Cisid EInfo |
| I P‘;Srg’cess stock Plnfo control FVSM |
VsSM
l - C‘Z‘si]ﬁeline —CVA |
I [ PPracess —shipment F]%%erial |
| vsm | crimeline -Nva |
VSM

| |
| B P]Zrlzlcess —CuSu l
| |
I ﬁ Information I
| | identify |
; | , |
: attributsysy attributsygy |

Property
| ) ) I
| + Keyysu |
| 1 + Valueysy Structure I

1 . .
| Elements 0/1 0/1 identify |
| ldentlfy 1 STCysy * |
e Wsm Eysy — ———-|
1 tgtysm *
+1D +1D
I
* *
1
Gvsm

Figure 68: Graphical representation of concrete modeling for VSM graph

4.1.4.3 Example

Figure 69 illustrates a concrete modeling transformation from graph g, to model m,.
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: Property
. PPTﬂCESS —process
. sy
(a,b): Eysum :Wsm Sort
Wsm conv O P
- : Property . pMateral
(b3,b) Type: Owned relation ’
: Property ID:a  |nput 1 Conveyer Owned 3 to Sort: Aowned
H EVSM belt 1 to Sort VSM
. pln Workers for Sort: Corrg "
:Wsm v
Type: Worker
: Property
9x € Gysm my € Mygy

Figure 69: An example of concrete modeling for a VSM graph

4.2 Formal description for IBD

In this section, the IBD is used as a component-oriented modeling method to describe LL-CPSs.
A set of IBD models M;zp describes a set of LL-CPSs on model-based description layer. A set
of graphs G;gp represents the same LL-CPSs on the formal semantical foundation layer. The
transformations between the models in M;zp and the graphsin G;gp are represented with the
mapping functions semi and coni (See Figure 70).

IBD

/ GI BD
Formal semantical ~ / /

foundation / / F
./ H (/

semi coni

L R
/ i /
Model-based ya Mgp :
description

Figure 70: Formal descriptions and descriptions transformation for IBD model

4.2.1 Formal semantical foundation

The IBD graphs on the formal semantical foundation layer are introduced in this section by
using of mathematical foundation, metamodel, graphical representation and example.
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4.2.1.1 Mathematical foundation

Every graph g;gp in the set G;gp is defined as a directed connected graph structure (see
Definition 4). It comprises a set of vertices V;5p and a set of edges E;zp. The functions src;gp
and tgt;gp link every edge with its source vertex and target vertex together. Every vertex and
edge have attributes that save the given information with a key-value structure, which
comprises a set of string Key,gp and a set of string Value,;gp. The mapping from the keys to
values are represented with a hash function.

Definition 35
9iep = (Vigp, Eigp, STC1pp , tgtipp, attributes,pp, Keypp, Value;pp)

Sz == Se |EIBD_’VIBD
tgtiep *=t9t |gpp—visp

Eipp = Vigp X Vigp
attributes;gp: = (Vigp U E;gp) = (Key;gp = Value;gp)

Key;gp = a set of values
Value;zp == a set of values

918p € Gipp

Every vertex and edge in g;gp have a unique identifier (ID). The ID of an edge comprises the
IDs of its source vertex and target vertex. An injective function id;;zp maps the identifiers of
every vertex and edge to strings.

Definition 36
idgigp = (Vigp U Ejpp) — IDs

IDs = a set of strings

4.2.1.2 Metamodel

Every vertex can connect with any number of edges, although one edge only allows connecting
with one source vertex and one target vertex. The attributes in any vertex and edge are used
to save the description information (see Figure 71).
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9iBD
B

ViBp Eipp
+ID 1 tg tIBD * +1D
0.1 0.1
P 1)
attributs;gp ropery attributs;gp
+ Keyysu
+ Valueygy

Figure 71: A Metamodel for formal semantical foundation of IBD model

4.2.1.3 Graphical representation

The graphical representation in Table 6 shows the symbol, name, mathematical model
element, metamodel element and description of every graph elements in a IBD graph g;zp.

. Metamodel .
Symbol Type Mathematical model element Descriptions
element
|
E Vertex Vigp € Vigp Vigp Vertex in graph
t:‘ Edge ensp € Eigp Eigp Edge in graph
Pri ) .
Attrib K Val opery Attributes of vertices and
ttributes eyigp = Valuegp ¥ Keypp edges
+ Valuegp
Connect src Connect relation for one
— . . src 27 HIBD .
Q relation begin IBD edge and its source vertex
— Connect Connect relation for one
C = . tgt tgtisp .
— relation end gtiep < edge and its target vertex

Table 6. Graphical representation of the formal semantical foundation of IBD model

4.2.1.4 Example
Figure 72 illustrates an IBD graph g, € G;gp. One edge links two vertices together to a

connected graph. The attributes of vertices and edges are used to save the description
information.
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: Property

: Vigp

Type: Output port

(Ms1_Hwa,Hwa_P1) & Egp

Type: MS

: Propert
Py : Visp

Type: Port ES

: Property

Figure 72: Example of the formal semantical foundation of IBD model

4.2.2 Model-based description

On the model-based description layer, a set of IBD models M;zp model a set of LL-CPSs.

4.2.2.1 Mathematical foundation

Any IBD model m;gp € M, is defined with an integrated system in a network structure (see
Definition 19) and comprises a set of model elements ME;z, and a set of relation elements
A;gp- The model elements comprise a set of blocks N;gpand a set of ports (interfaces) Pgp.
The specifications of the blocks and ports (interfaces) have been introduced in sections 2.4.1.2
and 3.1.2. The model elements and relation elements connect to each other by using of the
connection functions beg;gp and end,gp and build an integrated system.

Definition 37
mypp = (MEpp, App, begipp ,end;zp)

begipp :=beg | a,pp— MEzp
end;pp = end |A,BD—> MEgp

Ajgp = ME;gp X MEg,

mgp € Mipp

The model elements and relation elements in IBD model can be continually specified by
different types. The set of model elements ME,;5, comprises a set block elements N,z and a
set of port elements P;zp. They are disjoint sets. The N;zp comprises three disjoint sets: the
set of blocks for information systems N/5,, the set of blocks for process systems N/3;, and the
set of relevant environment factors N2i,. The N/, is specified by the types of software and
hardware. The N/5;, is specified into N5, and N/ . The N5, is continually specified into
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N> %" and NS5 SW . The set of relevant environment factors NfF, is specified into two

disjoint sets: N, and N, ¢F3.

The interface specification for the set Pjgp, is introduced in section 3.1.2.1. The PA}!
represents a set of HMI interfaces in an IBD model. The P, represents a set of material
interfaces. The Pf;, represents a set of electrical signal interfaces. The P, represents a set
of constructive interfaces. The Pjy, represents a set of software interfaces. The P,
represents a set of execute interfaces.

The relation elements can be specified into three disjoint sets: A%3% for all of the connection

. I t Output . .
relations between the port elements, A,z0" and Az P"" for the connection relations

between port elements and block elements.

MEgp :={ Nipp U Pipp}

Nigp = {Nfgp U Nfzp UNf,
NIBD BE= {NIIgDHW v NIIgESW}
IBD = {Nj IBD UN}gf)
Nisp = {Nigp ™ U Nigp W}
NMS .= (NMS—HW
Nip == {Nfp " U NP8

._ (pHMI | pM C ' pS i DE
Pgp := {P{HAT U Pffp U P, U Py U Pipp U Php)

. Con 'y pInput - ,Output
Agp = {AIBD UAIBD UAIBD

The identifiers of every IBD model element and relation element are defined with an injective
function idygp. The ID of a relation element is represented with its beginning model element
and target model element.

Definition 38
idyipp = (ME;gp U Ajgp) — IDs

IDs := a set of strings

There is a function category to map the types of model elements and relation elements in
IBD model to strings, which characterize the type of the corresponding model and relation
elements.

88



Chapter 4 - Formal Descriptions and Transformations of Managed Evolution of LL-CPSs

Definition 39

category := (ME;gp U A;gp) — strings

Vx € (ME,,, U Ajpp) 3 category(x) =

4.2.2.2 Metamodel

"IS — HW"
IS — SW"
"CS — HW"
llCS — SW"
"MS — HW"
"RF — H"
"RF — CPS"
"Port HMI"
"Port E"
"Port ES"
"Port C"
"Port S"
"Port M"
"Input port"
"Output port"

Mipp

"Connection"

. IS—HW
if x € Nipp

. IS—SW
lf X € NIBD

. CS—HW
lf X € NIBD

, cS—Sw
fo € NIBD

. MS—HW
lf X € NIBD

if x€ Nigp "'
i 2 € NG OPS
if x € PEMI
if x € PE,
if x € PE,
if x € PSp
if x € P3p
if x € P},
if x € AlPPUE
if x € AVuIPYE
if x € AR

begipp *
MEg), Ajpp
+1D 1 end,BD * | +ID
Zﬁ JAN
Input
A
IBD
Output
‘ AIBD
PS 1S
] s
A A 158

—{ IS—HW
NIBD

RF—H
NIBD ‘

.

M
PIBD

4{ IS—SwW
NIBD

cs—HW
Nigp

N <

b <

SW
NM_IBD

MS—HW
NIBD

Figure 73: A Metamodel for IBD Model
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The metamodel in Figure 73 describes the system structure of model m;z,. Every model
element must have an identifier and can have any number of relation elements, although
every relation element only allows connecting with one model element as source and one as
target. The ID of relation element is a tuple comprising the IDs from its beginning model
element and ending model element.

The specified model elements and relation elements in any model my 5, have to satisfy the
combination rules forming with metamodels in Figure 74 to Figure 80, which are used to
guarantee the system integration.

Output
AIBD

begpp

Figure 74: Combination rules between IS-HW model elements and ports

The block elements and port elements are connected to each other with the input and output
relation elements. Every block element allows having any number of input and output port
elements, although one port element only allows belonging to one block element.

Output
A 4

Input
AP IBD

IBD

beg,gp

Figure 75: Combination rules between CS-HW model elements and ports

For example, Figure 74 and Figure 75 show the hardware blocks in the information system can
have any number of ports by the types of HMI (HMI), electrical signal (ES), constructive (C) and
execute (E), like the hardware blocks in the control system. The software blocks in the
information system can have any number of ports by the types of software (S) and execute
(E), like the software blocks in the control system that are shown with Figure 76 and Figure
77. The hardware blocks in the mechanic system can have any number of ports by the types
of HMI (HMI), material flow (M), constructive (C) and execute (E), shown in Figure 78. The
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human blocks can have any number of ports with HMI (HMI) type and material flow (M) type.
The CPS block can have any number of ports in any type (see Figure 79).

Output
AIBD

Figure 76: Combination rules between IS-SW model elements and ports

Output
AIBD

Figure 77: Combination rules between CS-SW model elements and ports

Output
AIBD

Figure 78: Combination rules between MS-HW model elements and ports

PIBD

' end 1! be
NRE=CPS endgp Almput 918D
IBD

1 be * 1 end 1
NRE—CPS Gisp Output 1BD
IBD

P,
18D IBD

Figure 79: Combination rules between RF-CPS model elements and ports

Only two ports with the same type can be connected by using a connection relation element,
and a connection relation element can just links two ports together (see Figure 80).
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beggp 1

Con
PIBD AIBD

1 1
end;zp

Figure 80: A Metamodel for connection relations between ports in IBD model

The other connection in IBD model are not allowed. Accordingly, that block and block cannot
connect directly, port and port are not allowed to connect without connector to each other.

4.2.2.3 Graphical representation

The symbol, type, mathematical model element, metamodel element and description for
every model element in IBD model are shown in Table 7.

Mathematical
Metamodel -
Symbol Type model U Descriptions
element
It represents an entity, which is
TN conceptual in nature during the initial
Block Nigp Nigp p g : .
phase of development but will be defined
as part of the development process.
It is defined as the specified interaction
O Port Pisp Pigp : P
point on a block.
It represents a connection relation.
- Connection ALSn AGSE P
It represents an input relation.
—<{ | nputport | Al
; It represents an output relation.
}3_ Output port APt Aprt P P

Table 7. Graphical representation of the model elements in IBD model

4.2.2.4 Example

MS1_HW4 : N}&S

HWA.PLin MSL_HW4 = ATHP
HW4_P1
. pES
s IBD I
. . nput
HW5_P1 in MST_HWS5* Ajgp

~J

g MS

. ACon MS1_HWS5 : Nigp

HW4_P1 to HW5_P1 : Ajgp HWS P1: PI%SD

Figure 81: An example of IBD Model
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Figure 81 illustrates one model in M;5,. The block MS1_HW4 has one port HW4_P1, which
connects to the port HW5_P1 of the block MS1_HWS5.

4.2.3 Semantical mapping

The transformation function semi is defined as an unidirectional bijective transformation
function from IBD models in M;zp to IBD graphs in G;gp (see Definition 22). This
transformation function can be used for an equivalent transformation of a set of IBD models
on the model-based description layer to a set of graphs on the formal semantical foundation
layer.

4.2.3.1 Mathematical foundation

The domain of function semi is a set of IBD models M;zp and the codomain is a set of graphs

GIBD'

Definition 40
Semi = MIBD i GIBD

Like the transformation function semwv, the function semi is an equivalent mapping function
for a model m;zp in M;5p to a graph g;gp in G;gp, if it meet three requirements: elements
identify, structure identify and information identify (see section 4.1.3.1). The domain and
codomain of function are M;gp and G;pp.

(Ymypp € Mipp) 3 {g1sp € Gippl semi(mypp) = gipp}

4.2.3.2 Graphical representation

Table 8 shows a comparison of model/relation elements in an IBD model on the model-based
description layer and on the formal semantical foundation layer.

Model-based description of IBD Formal semantical foundation of IBD
Met del Met del
Symbol Name ctamode Sybol Name ctamode
element element
Block Nigo 'E Vertex Vigp
O Port Piap 'E Vertex Vigp
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- Connection Abon E Edge Vizp
4"{ Input A;g%”f ;\ Edge Ergp
}: Output ;\ Edge Epp

Table 8. Comparison table for semantical mapping of elements in an IBD model

Figure 82 shows a graphical representation for the semantical mapping from an IBD model

Mpp
1

begpp *

m;gp to an IBD graph g;gp-

MEIBD

+1D 1 end;zp

| |
| |
| |
| |
| |
| |
| |
| /\ |
| \ I |
B |
I AN |
| |
_ RF—H
: Nl \ Nis \ % Pl \ :
: wr | ] :
|
| |
|
| |
| |
| |
| |
| T |
| | . I
I I Information |
| identify I
| attributsgp é attributsgp |
| |
| Property |
| * + Keyysu ' Structure I
I Elements 1 + Valueysy identify I
' identify 0/1 0/1 1 :
| *
| 1 STCIBD |
________________ a
= —> ]/IBD EIBD <+
tgt .
+ID ! 9lisp +ID
* *
* -
YiBp

Figure 82: Graphical representation of the semantical mapping for IBD models
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4.2.3.3 Example

Figure 83 illustrates an example of semantical mapping from one IBD model m;,, € M;gp to a
graph g, € Gipp.

: VIBD : VIBD
Type: Output port : Property
MSI_HW# : Njj (Ms1_Hw4 Hw4 P1) : Ejgp : Property
S
LP1in MSLHW# .
semi oy ( .
*Pigp HW5_P1, MS1_HWS5):
W5 P1in MSLHWS: Al > E IBD
ViBD  (wwa_pa eR P1)
N . NMS * ) !
HW4.P1 to HW5.P1 + A3 s pr: PES, MSI_HWS : Nigp : Property
Vv
: Property * VIBD
s Property
my € M’BD 9gp (S GIBD

Figure 83: Example of semantical mapping of IBD

4.2.4 Concrete modeling

The concrete modeling is described with a unidirectional bijective transformation function
coni (see Definition 22) from a set of graphs on the formal semantical foundation layer to a
set of IBD models on the model-based description layer.

4.2.4.1 Mathematical foundation

The domain of function coni is a set of IBD graphs and its codomain is a set of IBD models.

Definition 41
coni = Gipp = Mjpp

The function coni is an equivalent mapping function, if it meet three requirements: elements
identify, information identify and structure identify (see section 4.1.4.1).

(Y918p € Gipp) 3 {mpp € Mipp| coni(g,pp) = Mypp}

4.2.4.2 Graphical description

The elements comparing by using of the symbol, type and Metamodel element between an
IBD graph on formal semantical foundation layer and an IBD model on model-based
description layer is illustrated with the Table 9.
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Formal semantical foundation of IBD Model-based description of IBD
Metamodel Metamod
Symbol Type element Symbol Type el element

) Model

E Vertex Vign -
— orUor element

t:‘ Edge E _....c[ }i Relation /-
mor or element

Table 9. Comparison table for concrete modeling of elements in an IBD graph

Y

The graphical representation in Figure 84 shows, how an IBD graph is reverted to an IBD model
by using concrete modeling.

Mipp

1

begpp *
—— DD MEgp Ajgp << - ==

+1D 1 end,gp * | +ID

| |
| |
|
| 5 A |
| \ |
| |
ACan
| iy
| /\ Alnput I
I ‘ I ] IBD I
PS IS RF
s ) e ] s ] |
| AN AN 18D IBD |
I RF—H |
| % N5 ‘ Nisp ‘ % Py ‘ |
I RF—CPS I
| | L i
| |
c
| :
| NA%BD IBD |
I - E I
| $ |
|
: | Information I
| | identify I
| attributs;gp I attributs;gp |
: Property :
| * + Keyysu * |
| El 1 + Valueygy |
| .jmi:ts 0/1 0/1 1 Structure |
identi . )
: Y 1 Srcpp . identify :
____________ VIBD EIBD - T
tgt .
+1D ! 9tisp +ID
*‘ *
¢
91D

Figure 84: Graphical representation of the concrete modeling for IBD graphs
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4.2.4.3 Example

Figure 85 illustrates a concrete modeling transformation from an IBD graph g, to an IBD
model m,,.

Vigp :Visp
(MS1_HW4 HW4_P1) : EIBD : Property MSI_HW4: N}
- e
- HWAP1in MSLEWH © A
+Property m ) E e
(Hws_p1, Ms1_HwW5): Eypp . : Prgp g
18D _ conlt HWS5_P1 in MSI_HWS* A g,
Type: Input port
VIBD (HW4_ Pl HW5_P1) —_— p LT S
: Property HWAP1 to HW5.P1+ ASSH s o PES, L +Nigp
Property IBD
Type PortES |: Property
9p € Gpgp my € Migp

Figure 85: Example of concrete modeling of an IBD graph

4.3 Formal mapping relation from VSM to IBD

The mapping relationship from one VSM graph to one IBD graph is represented with a
unidirectional mapping function h; on the formal semantical foundation layer. On the model-
based description layer, the mapping relationship from one VSM model to one IBD model is
represented with a unidirectional mapping function him; (see Definition 23). A set of VSM
graphs Gysy is mapped to a set of IBD graphs G;zp using a set of functions {h;}, and the
mappings for a set of VSM models My, to a set of IBD models M;gp is formed with a set of
functions {hm;} (See Figure 86).

VSM IBD
{hi} .G
Formal semantical GVSM » YIBD
foundation
Model-based My {fl"m;-"r > Mgp

description

Figure 86: The mapping functions from VSM areas to IBD areas
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The functions create; and create,, represent that a VSM graph can be mapped with a set of
functions {h;} and a VSM model can be mapped with a set of functions {hm;}.

Definition 42
createg = Gysy = P({h;})

Definition 43
createy = Mygsy — P({hm;})

4.3.1 Formal semantical foundation

On the formal semantical foundation layer, a set of mapping functions h; maps a set of VSM
graphs to a set of IBD graphs.

4.3.1.1 Mathematical foundation

Every mapping function h; is a one-to-one_mapping from a VSM graph to an IBD graph.

Definition 44
h; == Gysy = Gipp

In graph theory, the mapping relationship between graphs, in essence, is the mapping
relationships between the vertex sets and edge sets in different graphs [57] [16]. If a VSM
graph is mapped to a IBD graph with mapping function h;, there exists a multivalued mapping
function hv, for every vertex in this VSM graph. This function hv is a one-to-many and

surjective mapping function.

Definition 45
hv == Vysy = PVipp)

Vhi(gy) = ga 3w =V, » P(Vy)

9y € Gysu
9a € Gigp

If a VSM graph g,, is mapped to an IBD graph gq4, the function hv maps every vertex in g, to
a set of vertices in gg4. A vertex v in a VSM graph g,, can be mapped with a set of multivalued
mapping functions. Every mapping result comprises a set of vertices in g;, where this set of
these vertices must be a subgraph in g, (see Definition 7).
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(Vv € )3 {v; € Vo v(®) = (v} A g{v;} € ga)

j=1,-,n neN

One vertex v; € Vy can be mapped by different v in V. For instance, the vertex 8 in gg 1 in
Figure 87 is mapped by the verticesa and cin g,,.

Because the mapping function pv in the definition of the path morphism in Definition 13 is
also a mapping relationship from a set of vertices to a set of vertices. So the mapping function
hv can be also used to in the path morphism and the walk morphism (see Definition 14).

pm(p(vy,v)) = {p;({vi}, )| p;(vi,v) € 92}
9y € Gysy and g4 € Gipp
p(vi,vn) € gy

hv = Vysy = P(Vipp)

hw@,):={v} v €Vy
hv(v,) := {v;} v €Vy

i,j=1-+,n nNEN

A one-to-many (multivalued) and surjective mapping function he maps edges in g,, to edges

in 9a-

Definition 46
he = Eysy — P(Epp)

vhi(gy) = ga 3 he =E, > P(Ey)

Every edge in a VSM graph g, is allowed to be mapped with a set of multivalued mapping
functions he;.

(Ve € Ey) 3 {e; € E4| he(e) = {e;} }

i=1,-,n neEN
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4.3.1.2 Example

An example for the mapping relationship from a VSM graph g, to an IBD graph g4 is
illustrated in Figure 87. In order to clearly show the mapping relationships, all of the attributes
of every vertex and edges are described as invisible.

/a

|

|

|

\

\

\

\\
(a,b) (') h
ﬁ
1
]
]
/
1
|
|
'.
\
C
9y € Gysy 9a1 € Gip

Figure 87: An example of mapping relationship h

Table 10 shows the mapping relationships hv and he for every vertex and edge in graph g,, in
this example. Vertex 8 is shared with a and c. Edge (b’, c) maps to two edges (4,6) and (6,7) in

IBD graph gg4 1.

v € Vysy hv(v)
a {vy, vy, 8 }
b’ {v3,v0,}
c {ve, v7,v5}
e € Eysy he(e)
(a,b’) {(2,3)}
(b’,c) {(4.6),(6,7)}

Table 10. Mapping relationship of every vertex and edge
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4.3.2 Model-based description

On the model-based description layer, the mapping relationship from a VSM model to a IBD
model is formed with a mapping function hm;,.

4.3.2.1 Mathematical foundation

This hm; is defined as a one-to-one mapping from a set of VSM models My, to a set of IBD
models M;gp.

Definition 47
hm; := Mygy — Mpp

If a VSM model m,, is mapped to an IBD model m, with mapping function hm;, there is a one-
to-many and surjective mapping function hmm to map every model elements in m,, to a set
of model elements in m,.

Definition 48
hmm = MEysy = P(ME;pp)

vhm;(m,) = my 3 hmm = ME,, > P(ME,)

my € MVSM
mg € Mipp

In this mapping, every model elements in this set must be connected as an integrated sub-
model in model m, (see Definition 20) and one model element me; € ME; can be shared for
using by different me in ME,,.
(vme € ME,) 3 {me; € ME;| hmm(me) = {me,} A m{me;} < my}
j=1,-,n n€EN

A one-to-many and surjective mapping function hma maps any relation element in m,, to a
set of relation elements in m;.

Definition 49
hma = Aysy = P(A1pp)

thi(my) =mg I hma = A, > P(Aq)
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Every relation element in a VSM model m,, is allowed to be mapped with a set of multivalued
mapping functions hma;. One relation element in m; can be also shared by different relation

elements in m,,.
(Va € A)) 3 {a; € A4| hma(a) = {a;} }

i=1-,n n€EN

4.3.2.2 Example

The Figure 88 illustrates the example for a mapping hm from a VSM model m,, to an IBD
model m; . In order to clearly represent the mapping relationships, the description

information aside from the name in the VSM model is not displayed in all model elements.

~Tonveyerbelt1 ~~ /
- \ / \
\ | \
\ | HW2.P2 \
| | 0 wmsiHw2 \
MS1_HW4 ! | '
| 1
\ l
\ | Hw2_P1
Hwapt | \ /
-
‘ MS1_K1 J -
Read Color N 4
o \\;;,*, 777777 - e MS1.K3
T -
- -
Conveyer belt 1 d / T
li
Input 1 Conveyer ‘
belt 1 to Read \ HWS_P1, HW5.PS  HW5.P2 2
Color \ -y TS - HW6_P2
\ .
. L Hws.p3 MS1K4
\\ MS1_HWS il >{|  MS1_HW6
m, € MVSM N HWS_P4 HW6_P1
N
N 7/
N .
S~ _
T Read Color -
my € Migp

Figure 88: Example of mapping relationship hm

In Table 11, every model element and relation element in m,, is mapped with functions hmm

and hma to the model elements and relation elements in m;.

hmm(m,)

{MS1_HW4,HW4_P1,MS1_K1}
MS1_HWS5,HW5_P1, HW5_P2
HWS5_P3, HW5_P4, HW5_P5,
MS1_K4,MS1_HW6,HW6_P1, HW6_P2,
MS1 K3,MS1 HW2,HW2 P1,HW2 P2
hma(a,)

my

Conveyer belt 1

Read color process

ay

Input 1 Conveyer belt 1 {( MS1_K1, HW5_P1)}

to read color

Table 11. Mapping relationship of every model and relation element
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4.4 Formal managed evolution of LL-CPSs

In this section, the formal descriptions for the managed evolution processes of LL-CPSs are
introduced on the formal semantical foundation layer and model-based description layer. An
ongoing LL-CPS is defined as the existing status of this system. The managed evolved status of
this LL-CPS is defined as its targeted status. The managed evolutions of a set of LL-CPSs from
existing statuses to targeted statuses are represented with a set of unidirectional evolution
functions {fm;} on the model-based description layer. On the formal semantical foundation
layer, the managed evolutions are represented with a set of unidirectional functions {f;} (See
Figure 89).

Gtargeten!

{fV
Formal semantical G
foundation existing

Mtargeted
Model-based {f mQ/
description Mexisting

Figure 89: The managed evolution functions

4.4.1 Formal semantical foundation

On the formal semantical foundation layer, a set of evolution functions {f;} maps a set of
graphs Geyisting, Which represents a set of ongoing LL-CPSs, to a set of graphs Gargeted

representing a set of targeted status of the ongoing LL-CPSs.

4.4.1.1 Mathematical foundation

The evolution function f; is a unidirectional function from a set of graphs Gy;sting to a set of
graphs Gigrgetea- A set of these functions is represented by {f;}.

Definition 50

fi= Gexisting = Gtargeted

Gexisting = Gin
Gtargeted c Gin
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Every evolution function f; can be represented with a system of linear equations, as below.

9gc € Gexisting and 9a € Gtargeted

fi(gc) = ga
there is a system of linear equations:
ga=gc+ G¢
GE = GF — Ge

G ={g 94— 9.}
6o =1{9"| 9. — 94}

9.7 S9. 9 Sga

vVi,j=1,---,n neEN

Operators Explanatory Notes:

e g.+ G2 means the union graph of graph Jc and a set of graphs GA.

o Gr={g¥" ga— g.}is a set of subgraphs in g4, which are different compared with
Jc- Every subgraph must be a connected graph. For this reason, these subgraphs can
include some vertices in g., which are directly connected with the vertices not in g..
Accordingly, each subgraph g} comprises a set of the new added vertices and edges
with the direct connected existing vertices and edges.

o G. = {gc_j| 9e — gd} is a set of subgraphs in g., which are different compared with
Jga- Every subgraph must be a connected graph, although it cannot include any vertex
or edge in g,. Therefore, each subgraph gc_j is composed of a set of the deleted
vertices and edges.

4.4.1.2 Example

Figure 90 illustrates managed evolutions of an ongoing LL-CPS. A set of functions {f3, 2}
represents the managed evolutions from this ongoing LL-CPS representing with graph g, to
two graphs g4 1 and g4 ,, where the targeted status of this ongoing LL-CPS is expressed with
two different graphs g, ; and g4, on the formal semantical foundation layer. The attributes
of every vertex and edges are unseen to clearly express the managed evolution.

In this example, the graph g, ; shows one possible reconstruction for the targeted status of
the ongoing LL-CPS, where vertices 4 and 5 are new added. According to the operation rules,
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the remaining vertex 3 has to be added to g}!, in order to obtain the new added edge (3,4)
and build into the graph structure.

For f; there are:
Gt ={9¢" gap — 9c} = {9 (34,5)}

G: ={9.71 9c — 9aa} =0

o 9
2.3) (4,5)
O, A RO
(1,2)
>@ gddii € Gtargeted
i

e € Geyist ing ’ (2,5)
\@/ (4,5)

gd,Z € Gtargeted

Figure 90: Example of two managed evolution functions on the formal semantical foundation layer

Graph g4, shows another evolved possibility for the targeted status of the ongoing LL-CPS,
where vertices 4 and 5 are new added and vertex 3 is formed as a deleted vertex.

For f, there are:
GF ={92' (9a2 — 90} = (92" (2,45)}

Go =1{9-"] 9c = 9a2} = (952 (3)}
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4.4.2 Model-based description

On the model-based description layer, the existing LL-CPSs and their targeted statuses are
formed with a set of models My;sting and a set of models M;4ygeteq- The managed evolution
relationships from Mey;sting t0 Migrgetea are represented with a set of functions {fm,}.

4.4.2.1 Mathematical foundation
A function fm, is a unidirectional function from Meyisting 10 Migrgetea-

Definition 51
fm; = Mexisting = Mtargeted

Mexisting cM
Mtargeted cM

The linear equations below can be used to represent this evolution function fm;.

mg € Mexisting and mg € Mtargeted

fmi(me) =mg

there is a system of linear equations:
myg = m, @ M2

Mg =M © M
M¢ = {mf!|mg © mc}

M-

a

={mc_j|mce md}
m.) <m. mi<my

Vi,j=1,---,n n €N
Operators Explanatory Notes:

e m. @ M2 means an integrated system of the model m, with a set of models: M2,
which represents all of changes during the managed evolution of m,.

o MF ={m}|my © m.}is a set of sub-models m¢* in model m, compared with m,.
Every sub-model must be an integrated system and must include the elements in m,,
which are direct linked with the elements that are not in m.. Accordingly, every sub-
model is composed of a set of the new added elements and their direct connected
existing elements.
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e M, = {mc_l| m. 8 md} means a set of sub-models m_* in model m, compared with

mg. Every sub-model must be an integrated system, although it cannot include any
element in m.. Therefore, every sub-model is only composed with the deleted
elements.

4.4.2.2 Example

Figure 91 shows an example of a set of managed evolution functions {fm,, fm,}. A model m,
represents the existing status of an ongoing LL-CPS and the m;; and m,, express two
different models for the targeted status of the same LL-CPS. In order to clearly represent the

changes during managed evolution of LL-CPS, the other description information aside from
the ID is not displayed in every model element.

MS1_HW4 wipz [ MS1HWI
MS1_HW4 =
HW4_P1 \
BN \ MSLK1 MS1_K2 HWI1_P1
\ \
HW4.P1 | |
\‘\ f my \ Hws-po HWS P2
| w5 P1 -
| L Hws.P3
\ MS1_HWS5 [
\‘ HWS5_P4
\ mws.ps  HWS5 P2
HW5_P1 N - md,1 c MIBD
q  HWS5.P3
MSI_HWS5 ] f mo
HWS5_P4 HWS5.P5 — HW5.P2 e p2
HWSPL -
1
N HW5_P3 MS1 K4
MS1_HW5 3 >~
m, € Mypp - L = Ms1HWE
B HW6_P1

mg o € Mipp

Figure 91: Example of two managed evolution functions on the model-based description layer

In this example, model m,;, shows an evolved possibility for the targeted status of the

ongoing LL-CPS, where the targeted status is implemented with a new system, which is
integrated a new hardware MS1-HW1 on the existing model m..

For fm, there are:

MF = {m}|mg, © m.}

{ +1 HWS_PS,MSl_KZ,MSl_HWl,}
=tmt( )
¢ HW1_P1,HW1_P2

M ={m;'|m.© myy} =0
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The my, shows another evolved possibility for the targeted status during the managed

evolution of LL-CPS.

For fm, there are:

(HWS_P4, MS1_K4, MSl_HW6,)}

+ +i = +1
M ={m¢t|mg, © mc} = {mc HW6_P1, HW6_P2

M; = | me © maz) = fmet (1)

In mg », the hardware MS1-HWS5 with its ports is retained and connects with a new hardware
MS1_HWS®6 by using the ports HW5_P4 and HW6_P1. A connector MS1_K4 links these two
ports together. The hardware MS1_HW4 with its port HW4_P1 is deleted in the targeted

status.
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5 Solution Approach Overview

Content

5.1 Problems formalization

5.2 Semantical mapping

5.3 Generating graph solutions
5.3.1 Reforming the mapping domain
5.3.2 Creating the mapping codomain
5.3.3 Path morphism
5.3.4 Graphs combination

5.4 Concrete modeling

5.5 Optimizing the model solutions

After the introduction of the formal descriptions and transformations of the managed
evolution of LL-CPSs, the problems introduced in chapter 3 will be formalized in this chapter
by using the formal descriptions and transformations. On this basis, an approach is introduced
to solute the problems during the managed evolution of LL-CPS.

Section 5.1 introduces the formalization of the start position for the managed evolution of a
LL-CPS by using the cube model introduced in chapter 4. In section 5.2, the semantical
mapping functions will be used for the equivalently transformations of the models at the start
position from the model-based description layer to the formal semantical foundation layer.
Section 5.3 introduces how to generate a set of graph solutions on the formal semantical
foundation layer, which are generated from the changes during the managed evolution of the
LL-CPS. Every graph solution in this set represents one possible solution for the targeted status
of the LL-CPS. In section 5.4, these graph solutions will be equivalently transformed from the
formal semantical foundation layer to a set models on the model-based description layer,
thereon every model must satisfy the combination rules in modeling method and the
execution sequences of the development requirements. The models, which cannot satisfy the
combination rules and execution sequences will be deleted from this set.

In section 5.5, a model will be determined that represents the local optimal costs of system
reconstruction during the managed evolution of this LL-CPS. Accordingly, the problems during
managed evolution of LL-CPS are solved by using this approach.

Figure 92 shows the processes of the approach to solve the problems during the managed
evolution of LL-CPS and the arrangement of sections in this chapter.
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Figure 92: The processes of the approach
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5.1 Problems formalization

Figure 93 shows the start position of the managed evolution of a LL-CPS, which is
illustrated using the conveyor system with ASRS in chapter 3. In this example, the
existing status of this LL-CPS named also as the ongoing LL-CPS is described concurrently
with two modeling methods: VSM and IBD. There is an inherent mapping relationship
from the elements in the VSM model to the elements in the IBD model, when both
models describe the same LL-CPS. For instance, a conveyor belt with a RFID read/write
sensor is modeled with a process element in the VSM model and modeled as a set of
model components in the IBD model. Therefore, this process element is mapped to this
set of model components from the VSM model to the IBD model.

The targeted status of this LL-CPS is clearly described with a VSM model. The managed
evolution from the existing status to the targeted status of this LL-CPS is defined with an
evolution relationship from one VSM model to another. However, in this start position
the IBD model, which describes the targeted status of this LL-CPS, is unknown. The
mapping relationships for the new added model elements and relation elements in the
VSM model describing the targeted status are unknown. For instance, the new added
process element “read color” in the VSM model for the targeted status does not have
any mapping relationship to the model elements in the IBD model (see Figure 93). The
evolution relationship for the existing IBD model is unknown too.

VSM IBD

.
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Targeted !
:
Status :
:
:
:
:
i
:
:
:
:
:
e
:
: -~ Tnfo1 S
: o - X
H - Conveyer belt 1 . / !
1 . Vo IS1_HWI !
1- / [N MS1_KS J
ot Ma_pglng_ ; N \ aa
relatiohiship | S e .
Existing ' ] - ‘f
Status Conveyer bett2 - =T -7 MSL_H1 !

HWs P3N <

0 msz_Aws

N /
Sort _ e ~o -
S === ~~~ Conveyerbelt2 _ -~

VSM model for a on-going LL-CPS IBD model for the same on-going

LL-CPS

Figure 93: Example of the start position of the managed evolution of a LL-CPS
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The objective of this approach is to generate a new IBD model that represents the
targeted status of this LL-CPS as same as the VSM model. At the same time, the managed
evolution from the existing IBD model to the new IBD model must offer a local optimal
costs of system reconstruction and controlled risks for system development.

This start position is formalized with the cube model introduced in chapter 4. The three
models, one mapping relationship and one evolution relationship in Figure 93 are all laid
flat on the model-based description layer in the cube model. The VSM model for the
ongoing LL-CPS is formalized with a model m, € My gy cxisteq and the IBD model for the
same LL-CPS is formalized with a model m, € M;gp oxisteq- These two models are known.

The mapping relationship from m, to m, is defined with a function hm,.. The mapping
relationships for the model elements and relation elements from model m, to model
m, are represented with functions hmm, and hma,. These functions are also known.

The targeted status of this LL-CPS is described with a VSM model m,, € Mygy targetea-
The evolution relationship from m, to m,, is formalized with a function fm,. The model
m,, and the functionfm, are known (see Figure 94).

There are
my € MVSM,existing
my € MVSM,targeted
mg € MIBD,existing
and
fmx(mx) =m,
hm,(m,) = m,
for any
Vme, € ME, Va, € A,
there are
hmm,(me,) = {mec,i}
hma,(a,) = {ac,i}

me.; € ME, ac; € A;

i=1-,n neEN

VSM IBD

my ’ ?
Model-based frmy- - ,,,,,

description m h'r’nx Existing
x me Status

Figure 94: Formalization of the start position with the cube model
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5.2 Semantical mapping

All of the known VSM and IBD models will be equivalently transformed to graphs on the formal
semantical foundation layer in this cube model. Such graphs represent different models with
a universal form (see Figure 95). The equivalent transformation function semv transforms
VSM model m, to graph g, and model m, to graph g, . The equivalent transformation
function semi transforms IBD model m_. to graph g. (see Definition 33 and Definition 40).

semv(m,) = g, semv(m,) = g, semi(m,) = g,

The transformations of the model and relation elements to their corresponding vertices and
edges have been introduced in sections 4.1.3 and 4.2.3. The description information of the
model/relation elements is reformed and ordered into the attributes of the corresponding
vertices and edges.

VSM IBD
/ - - —
/ /i
Vs 9y 4 ;
// r‘ //
/ f / /
Formal semantical / W /
; / g x g
foundation / x - > c /
/ s
3 .
semv semi
//l m : : ’ i / Targeted
: v ¥ ) ! yd Status
Model-based O L “/‘ E e SEREEE 5 /
description v/ Py, N e Existing
/ m, ' me / Status

Figure 95: Semantical mapping with concrete example

Because the semv and semi are used for equivalent transformations, the graphs gy, g, and
Jc on the formal semantical foundation layer can be understood as the projections of the
models m,, m, and m.. The mapping relationship h, from g, to g, and the evolution
function f, from g, to g, are projected from the functions hm, and fm,. The mapping
functions hmm, and hma, are projected to the mapping functions hv, and he, for vertices
and edges from g, to g.. The models and functions are known, therefore the projected
graphs and functions are known.

There are
Ix € GVSM,existing
gy € GVSM,targeted
Ic € GIBD,existing
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and
fx(gx) =9y
hx(gx) =Jc
for any
Vv, €V, Ve, €EE,
there are

hv,(vy) = {vc,i}
he,(ey) = {ec,i}

VUe,i € Vc €c,i = Ec

i=1:-,n neEN

5.3 Generating graph solutions

All of the known models and functions at the start position of the managed evolution of a LL-
CPS have been equivalently transformed to the graphs and functions on the formal semantical
foundation layer in the previous section. In this section, they will be used to generate a set of
graphs G; = {gq4;} from the VSM domain to the IBD domain on the formal semantical
foundation layer by using algorithms in graph theory. Each graph in this set represents an IBD
graph for the targeted status of this LL-CPS named the graph solution. A set of functions {h,, ;}
maps the graph g, to this set of graphs G; = {g4,} (see Figure 96).

hy,i(9y) = {94:} = Ga

i=1,-,n andn €N

VSM IBD
) ’1 o _ A
/ {,L’}:i} 8 Gy Y
T g s
9y —_——— "% ¢ /
}/ f‘/ # 7
Formal semantical N /
) hi
foundation 9x > Yc
f semv semi
/ g Targeted
! Y. My ' K / Status
Model-based j A— ! / T B bomme
description e L hmy P/ Existing
4 My L me Status

Figure 96: Generating a set of graph solutions
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Graph g, comprises two parts: the remaining vertices and edges and the new added vertices
and edges during the managed evolution from g, to g,,. By using the linear equations of the
managed evolution function f, (see section 4.4.1), these two parts can be reformed with a set
of subgraphs G = {g;j} for all new added vertices and edges and a set of subgraphs g, —

G, for all remaining vertices and edges.

G; z{g;ilgy_ gx}
Gr ={9:"| 9 — 9y}

gi' S gy
9%’ € gx

i,j=1-+n nNEN

Moreover, the mapping relationship from graph to graph is essentially the mapping for every
vertex to vertices and edge to edges. For the remaining vertices and edges, the mapping
functions hv, and he, are used to map them to the vertices and edges in graph every g, ; (see
Definition 45 and Definition 46). For the new added vertices and edges, it is necessary to
define two new mapping functions.

hv, (v), ifvev,

¥ & VRl 7)) = {funca'on 1, ifvelV,

he,(e), if e €E,

ve € Ey3 heye) = {function 2, ife@E,

i=1,---,n andn € N

5.3.1 Reforming the mapping domain

The path morphism mapping function pm (see Definition 13 and section 4.3.1.1) is used to
define these two new mapping functions: function 1 and function 2, for the new added
vertices and edges in a VSM graph into vertices and edges in an IBD graph. The first step is
reforming of the new added vertices and edges to paths, which are defined as the domain
elements of the path morphism mapping function pm.

The set of subgraphs G, includes all new added vertices and edges, which will be reformed
into a set of paths {p;| [l = 1,:--,n n € N}, and they must satisfy the following requirements.
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The set of paths {p,} is a finite set of paths and must include all of the new added
vertices and edges in g, compared with g,.

Any path has at least one remaining vertex or at most two remaining vertices.
Any path must have at least one new added vertex.

Any two remaining vertices cannot be adjacent in any path.

Any remaining vertex cannot lie between two new added vertices in any path.
Find out the paths including two remaining vertices as much as possible.

It should be emphasized that if the remaining vertices in any path are deleted, the
remaining part after the deleting must be a series of connected new added vertices or
one single new added vertex. This method can be used to evaluate the reforming results.

5.3.2 Creating the mapping codomain

The elements in the codomain of the mapping function pm should also be paths in a graph. A
foundation graph g. is created to determine the codomain of pm. The following steps show
how to create this foundation graph g;.

(%]
S
>

Figure 97: Complete directed graph K4

First of all, get all of the vertices in graph g., which represents the existing status of
the LL-CPS.

Link those vertices together to build a complete directed graph Kn. The variate n is
the number of all vertices in g;. Figure 97 shows a complete directed graph K4.
Subsequently, insert a virtual vertex between every two existing vertices in Kn and link
the virtual vertex to the existing vertices to substitute the edges in Kn. This new graph
is named Kn*. Each virtual vertex is an IBD vertex and it must have an identifier, which
comprises the ID of its front vertex and the ID of its following vertex. For instance, the
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identifier of virtual vertex vy (q ») comprises the identifier “a” of its front vertex v, and
the identifier “b” of its the following vertex v,. The index “x” shows, the vertex is a
virtual vertex. The attributes in a virtual vertex can be defined as an empty value or an
infinite value. The empty virtual vertex represents a directed edge. An infinite value
can be understood as a black box contains any number of vertices to represent any
change during the managed evolution of a LL-CPS. A new added virtual edge is an IBD

edge. Figure 98 shows an example of a graph K4*.

e Combine the graphs h,(g, — Gy ) and Kn" together to obtain a new directed graph

Je-

[ x14 )

Because the set of graphs G, includes all deleted vertices and edges, all remaining vertices
and edges in VSM graph during the managed evolution of LL-CPS can be formed with g, —
Gy . By using the mapping function h,, all remaining vertices and edges in g, during the
managed evolution of the LL-CPS are mapped to h,(g, — G, ) that represents the remaining
vertices and edges in g, during the managed evolution of this LL-CPS.

The virtual vertices can contain any number of attributes to represent any change during the
managed evolution of a LL-CPS, thus the graph g; is understood as a graph represents any
changes during the managed evolution of this LL-CPS. Therefore, a set of paths {p;;} in the

y ~~_
A/ 1 "\L 'I/ \‘
o \‘/ y o }/ \\
7 o — i AN
/ - / .
(x13) (x31) [x23) (x32)  (xa4) (xa2)
N ,; — -.7. s ~ -
\ | {43 )y ) /-
‘l\?l/\”‘ ~ 4 %

Figure 98: Directed graph K4*

foundation graph g; is defined as the codomain of mapping pm.
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5.3.3 Path morphism

The path morphism function pm (see Definition 13 and section 4.3.1.1) maps every path in a
set of paths {p,} in graph g,, to a set of paths {p;;} in graph gy.

pm (p1) = {pui}

b = (Ul, ...,Un)
pl,i: = (vl" oo vn')
m(v ) . {hvx(vl)' lf V1 € Vx
PMYL) "= 1 any connected virtual vertex with hv, (v,), if v, &V,
m(v ) . {hvx(vn)’ l,f v‘)’l E VX'
pmitn) #= any connected virtual vertex with hv,(v,), if v, &V,

Every path in {p;;} is a result path and it must satisfy the following requirements.

e Every result path must be a finite path.
e Every result path must include at least one remaining vertex.
e Each vertex in result path can only appear a finite number of times.

In order to obtain the mapping relationships for the new added vertices and edges, the result
paths have to be reformed to vertices and edges.

If a remaining vertex or edge in a path p; is deleted, the mapped vertices or edges in the
corresponding path p; ; will be also deleted. The other vertices and edges in path p; hold the
mapping relationships with the remaining parts in the corresponding paths p; ;. This necessary
condition for reforming is used to determine the two new mappings in hv,,; and he,,; for the
new added vertices and edges. The set {p;} includes all of the new added vertices and edges,
therefore the mapping functions hv,,; and he,,; can be determined as below.

pm (p;) = {pii}
Vi={vlvep, AveEV]}

hv, (v), ifvev,

Vv € p,3 hvy,i(v) = {Vl,i/hvx (V]), ifvel,

he,(e), if e €E,

Ve € plEI hey,i(e) = {:P(El i), lf e e Ex

i,j,l=1-,n neEN
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5.3.4 Graphs combination

Every result path in have to be combined with all vertices and edges in h,. (g, — Gy ) together
to build a new graph g4 ;, which represents the targeted status of the LL-CPS.

n
Jai = Z i @ — G5
=1

Each graph gg; in the set of graph solutions G; = {g,;} represents one reconstruction
possibility for the targeted status of the ongoing LL-CPS.

After undertaking all of the steps above, the objective mapping functions h,,; , hv,, ; and he,, ;

Vi
are determined.

5.4 Concrete modeling

VSM IBD
S v - A
/ i]l;.:; } — . Gg /
/ ’ gy —_— ¢ :? ) /
// ,7 o *\:?_‘g_,_,.;/ /
. ya Jx o A
Formal semantical // he S/
foundation  / Ix = > Ic 4
0 . I/
‘ i i cont |
semv f i semi ‘
Ve ' ‘ T i
Y. m ' ® ¢ ;\\IM" € My // Targeted
! // Y ' R ] ° e Status
: . Fm ! ’ — /
Model-based // *r”'/‘z ffffffff ! P o/
description L/ L by , v Existing
My me L/ Status

Figure 99: Concrete modeling of graph solutions

The set of graph solutions G4 have to be equivalently transformed from the formal semantical
foundation layer to a set of models on the model-based layer in the cube model to obtain the
IBD models. The equivalent transformation function coni transforms the set of graphs G; =
{ga i} to a set of IBD models M; = {mg;} (see Definition 41).

coni(gg,;) = Mg,
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If the IBD vertices and edges in g, ; are remaining vertices and edges during the managed
evolution of the LL-CPS, they have to be transformed to the original model elements and
relation elements (see section 4.2.4). If an IBD vertex or edge is a virtual vertex or edge, it has
to be transformed to a virtual model element vme, ; or a virtual relation element va, ; in an
IBD model. The virtual model element or virtual relation element is defined as an IBD model
element or IBD relation element with the undefined description information.

vmey; € MEgp vag; € Aigp

Before to ascertaining the costs local optimal solution in the set of models M, the description
information of the virtual model elements and the virtual relation elements in any model mg ;
should be filled. For instance, the virtual model elements and virtual relation elements can be
filled with different type information. The filled virtual model element can be an IS-HW block
or a HMI port or an integrated sub-model. The filled virtual relation element can be an input,
output or connection relation element. Any virtual model and relation element has to be filled
to satisfy the combination rules as much as possible, which have been introduced in section
4.2.2.

Every model m, ; after the filling must satisfy two requirements. The IBD models, which can
meet these two filter conditions, make up a set of models M,. This set is a subset of M; (see
Figure 99).

e The first requirement is the combination rules of this IBD modeling. If any filled model
element or relation element is still unable to meet the combination rules, this model
will be deleted from the set of models M.

e Because the model elements and relation elements in the VSM model m,, can be
mapped to model elements and relation elements in the models in M; by using the
cube model. Therefore, the model elements and relation elements in any IBD model
mg; € My must satisfy execution sequence of the mapped the model elements and
relation elements in VSM model m,,. If any IBD model cannot satisfy the execution
sequence, it will be filtered out from the set M.
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5.5 Optimizing the model solutions

VSM IBD
/7 A
/ //
/7 S
/ o /
/ ; ’,’ —*0 /
, , ;
Formal semantical / / /
. / g hy . g
foundation / x ,f > c /
/ s | /
coni i
semv semi
| B — 1 /
/ ! ' mg /S
V4 H y ) i Targeted
: / My ; ’ o . : / Status
H 4 ' . H /
Model-based | /- f ’/ ------- S b
description s b, , v Existing

L/ m, me Status

Figure 100: Optimizing the model solutions

Each IBD model in the set M, represents a possible reconstruction for the managed evolution
of the LL-CPS from the existing status to its targeted status. In order to ascertain the cost-
optimal one, every model and relation element in each IBD model will be labelled with “costs”.
For every model solution mg; in M,, there is a costs function C to label the costs of the
reconstruction for every model element in the IBD model. The total costs of the reconstruction
in one model solution is defined as the sum of these costs of its all reconstructed model
elements.

C 8= C |MEIBD_>N

C(mg,) = Z C(MEg4,;)

The local optimal solution m,; (see Definition 18) is defined as the final solution for the local
minimal cost of the reconstruction during the managed evolution of LL-CPS (see Figure 100).

mg = min(C(mg;)) i=1-,n nEeEN

This approach is introduced for the managed evolution of a LL-CPS with local optimal costs
and controlled risks in ongoing operations. In chapter 6, this approach will be implemented.
The evaluation of this approach and the implementation will be introduced in chapter 7.
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6 Implementation

Content

6.1 System requirements
6.1.1 Use case diagram
6.1.2 Input models restructuring

6.2 System architecture
6.2.1 System structure

6.2.2 System behavior

6.3 Functions realization

In this chapter, a Java application is developed to implement the approach that has been
introduced in the previous chapter. In section 6.1, the system requirements of this application
are illustrated by using of a use case diagram. Subsequently, the Input models restructuring
for this application is introduced to serve a foundation for the implementation of the main
tasks of this approach. In section 6.2, the system architecture and behavior in this application
are introduced by using a class diagram and sequence diagram. The realization of the
important algorithms and functions is introduced in the last section by using the formal and
informal programming description.

6.1 System requirements

The approach should be implemented within the scope of a suitable environment and a clear
implementation process. All of the requirements for this application are illustrated by using
the use case diagram in this section.

6.1.1 Use case diagram

This application is named the LL-CPS managed evolution solutions generation system and its
system environment comprises LL-CPS planner and LL-CPS designer. The LL-CPS planner
defines two VSM models as input models for the managed evolution of LL-CPS. The LL-CPS
designer places the IBD model of the ongoing LL-CPS as an input model and he defines the
mapping relationships form the VSM model to this IBD model for the ongoing LL-CPS. By using
this application, the LL-CPS designer obtains the costs local optimal IBD model as a solution
for the implementation of the managed evolution of this LL-CPS, which is visualized with a
graphical user interface (GUI). The other functions and algorithms in this application are
shown with a block “Generating” in Figure 101.
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place generation system

% LL-CPS managed evolution solutions
\VSM models

LL-CPS planer

place
IBD model
and relationships

/

receive solution

- -<<usSes>>--—-=
GUI
(Graphical User Generating
Interface
==~ -<<uses>>--=

LL-CPS designer

Figure 101: Use case diagram for the LL-CPS managed evolution solutions generation system

6.1.2 Input models restructuring

The data structure plays an important role in the system requirements, which serves the basis
for the later data processing. All of the input models for this application will be reformed with
a standard data structure. Every VSM model has to be restructured by the LL-CPS planner with
the key-value data structure in a pair documents. One of them represents the model elements
in the VSM model. The other one represents the relation elements with a two-tuple data
structure, which describes the connection relationship with the IDs from one model element

to another.
Key (ID) Value Relation elements
A string a,b
b string b,a
(a) Model elements in a VSM model (b) Connection relationships in a VSM model

Table 12: Example of data structure in a VSM model

Table 12 shows an example of this data structure with two inputs documents for a VSM
described LL-CPS.

The IBD model restructured by the LL-CPS designer describes the ongoing LL-CPS (see Table
13) with the same data structure as the VSM models.
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Key (ID) Value Relation elements
1 string 1,2
2 string 2,3
3 string
(a) Model elements in an IBD model (b) Connection relationships in an IBD model

Table 13: Example of data structure in an IBD model

There are another two necessary input documents to represent the mapping relations for the
model and relation elements in the VSM model to model and relation elements in the IBD
model, which model the same ongoing LL-CPS. Table 14 illustrates these mapping
relationships with two input documents.

In this example, the model element “a” in the VSM model is mapped to a set of model
elements “1” and “2” in the IBD model. The relation element “a, b” in this VSM model is
mapped to the relation element “2,3” in the IBD model.

Model element in VSM Model elements in IBD
a 1,2

(a) Input document for the mapping relation between model elements

Relation element in VSM Model elements in IBD
a,b 2,3

(b) Input document for the mapping relation between relation elements

Table 14: Example of input document for the mapping relationships

6.2 System architecture

6.2.1 System structure

The system structure describes the organization and arrangement of interrelated components
in a system. In software engineering, it can be represented in diagrams such as a class diagram,
in which the structural classes reflect the functional requirements of the application.

The class diagram in Figure 102 shows the system structure of this application implemented
by Java in the software programming tool Eclipse. The class “home” provides a graphical user
interface for the generic organizing and structuring of this application and therein the program
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starts with the main function. The class “Algorithimlib” is an algorithms library and it

comprises the different algorithms; for instance, the algorithms in the graph theory, the

optimization problem, etc. They will be used by the class “graph” to implement the functional

requirements. The class “SystemRules” provides the combination rules, which is used by the

class “Algorithimlib” to obtain the combinable solutions.

<<Java Class>>

®SystemRules
classes

<< lava Class>>

®home
classes

<< Java Class>>
® Algorithimlib
classes

rules: String
“&'mylList: List<String>

o Synus: JFrame

o textField: JTextField

o textField_1: JTextField
o textField_2: JTextField
o textField_B: JTextField
= textField_8: JTextField
o textField_3: JTextField
o textField_4: JTextField
o textField_5: JTextField
o textField_7: JTextField | ...
o textField_9: JTextField fe..
= mheo: Choice
o’rulespath: String
osmodenpath: String
o“relation1path; String
osmodal?path: String
orelation2path: String
osmndelApaih: String
orelationApath: String
o°mappingpath: String
@ main(String[]):void
@ home()

@ initialize():void

© read():void

& SystemRules() -

o graph2: DefaultDirectedGraph<node DefaultEdge>

<'rel: ArrayList<String>

4 rela: ArrayList<String>

o relaA ArrayList<String>

4 relaB: Arraylist<String>

4 relaC: ArrayList<String>

4 allsubpathbetween2node: List<GraphPath<ibdNode DefaultEdges>
4 resultpahts: List<List<GraphPath<ibdNode DefaultEdge>>>

4 nodemapping: ArrayList<ArrayList<String>>

&'modelpath: String

.| &’basicGraph: DefaultDirectedGraph<ibdNode DefaultEdge>

& Algorithimlib()

© mappingGenerat(): ArrayList<AmrayList<String=>
@'comparingGraphs(ArrayList<String> ArrayList<String=): ArrayList<String>
o findresultpaths(): List<List<GraphPath<ibdNode DefaultEdge>>>

© reformtopaths(): ArrayList<String>

@ completegraph(): DefaultDirectedGraph<ibdMode ,DefaultEdge>

© buildbasicgraph(): DefaultDirectedGraph<ibdNode DefaultEdge>

@ print():void

@ ruler_matching():void

S \/0.,1
\ %

<<Java Class>>
®graph
classes

<*graph1: DefaultDirectedGraph<ibdNode DefaultEdge>

<"graph3: DefaultDirectedGraph<vsmNode DefaultEdge>
&'readnodepath: String

asmappingrelapath: String

&readnodepath2; String

Asmappingreiapath’:!: String

“readnodepatha; String

Asmappingrelapatha: String

“relations: ArrayList<String>

Srelations2: ArrayList<String>

Srelationsa: ArrayList<String>

a’graph2: DefaultDirectedGraph<vsmNode DefaultEdge>

a

& graph()

@ build():void

© Addedge():void

© printGraph(Choice JTextField JTextField):void

evsreturnnode(Str'rng):vsmNoda

i

<<Java Class>> \]
G;:;:;:de <<Java Class>>
E ®node
4 descl: String ‘\“D i
7 & desc2: Sti : il
T - es ring : T =i suing
& lbdhode) B — 4 name: String
,,,,,,, & nodef()
o <<Java Clags>>
...... ©vsmNode
TP classes

4 descl: String
&vsmNode()

Figure 102: Class diagram of the application
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6.2.2 System behavior

The system behavior is a specification of events that occur dynamically over situations or time.
This specification is determined specifically by what events occur in that situations or time.
The sequence diagram in Figure 103 represents the interactions between the classes in this
application, arranged in time sequence.

home graph vsmNode: node ibdNode: node Algorithmlib SystemRules

retrieve node—»D
i node---------

build()—»

Fddedge() |

mappingGenerat()

|
—————————————————————————————————— resultpahts-------------------

ruler_matching()

read ()—U

Figure 103: Sequence diagram of the application
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6.3 Functions realization

Two important functions for this application are introduced by using the informal and formal

descriptions in this section.

The reforming the mapping domain of the path morphism function pm introduced in section
5.3.1 s first introduced with the pseudocodes below. They describe the operating principle of
the algorithm, which reforms the new added vertices and edges during the managed evolution

of a LL-CPS into a set of paths.

Algorithm findChangedPaths

Input: verxGpl: all of the vertexes in Gpl,

verxGp2: all of the vertexes in Gp2,
edgesGp2: all of the edges in Gp2

Output: candidates| |

Parameters and variables:

(Vx,Vy) is any edge from Vx to Vy in Gp2. (Vx,Vy) € edgesGp2
candidates| | is a set of paths

e A

10:
11:
12:
10:
14:
15:
16:

: initialize: set candidates[ ] = null
: set all of the elements in verxGp2 as unvisited vertices:

Vx.visited = false

: set all of the elements in edgesGp2 as unvisited edges:

(Vx,Vy).visited = false

: while any edge has not been visited do

if Vx and Vy are in verxGp1 then
set edge (Vx,Vy).visited = true

else if Vx € verxGpl and Vy & verxGp!l then
set edge (Vx,Vy).visited = true

else if Vx € verxGpland Vy € verxGpl then
set edge (Vx,Vy).visited = true
function arrowSearch(Vx,Vy )

else if Vx € verxGpl and Vy € verxGpl then
set edge (Vx,Vy).visited = true
function oppositeSearch(Vx,Vy )

End if

End while

The functions arrowSearch and oppositeSearch are used to chain all of the new added vertices
and edges into paths. The pseudocodes below describe the function arrowSearch. The
function oppositeSearch is the same as the function arrowSearch, albeit in a different search

direction (see section 13.1).
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function arrowSearch( )

1: initialize: set list tempPath[ ] = null

2: initialize: set a Stack S := null

3: Set Vx.visited = true, Vy.visited = true

4: if Vy has any linked following vertex in Gp2

push all of the linked following vertices of Vy into Stack S
6:  while S is not empty do

7: if S.peek.visited = false then

8

9

W

if S.peek & verxGpl then
: if S.peek has not linked following vertex then
10: add S.peek into tempPath|[ ]

11: set S.peek.visited = ture

12: save Path(Vx,Vy,tempPath[ ]) in candidates[ ]

13: set all paths in Path(Vx,Vy,tempPath[ ]) as visited paths
14: delete S.peck

15: reset tempPath[ | =null

16: else

17: add S.peek into tempPath|[ ]

18: set S.peek.visited = ture

19: replace S.peek with all of its linked following vertices in S
20: else

21: add S.peek into tempPath][ ]

22: set S.peek.visited = ture

23: save Path(Vx,Vy,tempPath[ ]) in candidates] ]

24: set all paths in Path(Vx,Vy,tempPath[ ]) as visited paths
25: delete S.peek

26: reset tempPath[ | =null

27: else

28: delete S.peek

29: End if

30: End while

31: else

32: save Path(Vx,Vy) in candidates| |

The implementation of another important function is introduced with the Java codes in Figure
104, which is used to compose the result paths to a set of solution graphs.

for(int m = @; m < templ.size(); m++){
if(vertexExisted.contains(templ.get(m))){
cantinue;
telse{
bwl.write(templ.get(m)+ "," + templ.get(m));
.Flush();
.newline();
write(templ.get(m-1)+ "," + templ.get(m));
LFlush();
.newline();
write(templ.get(m)+ "," + templ.get(m+l1));
LFlush();
.newline();

(SRS ==y

~“oToogooTooyg

[

Figure 104: Generating to graphs in Java code
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7 Evaluation

Content

7.1 Case study 1: Conveyor System with ASRS
7.1.1 LL-CPS managed evolution by using the approach
7.1.2 Comparison of solutions
7.1.3 Development risk evaluation
7.1.4 Economic evaluation

7.2 Case study 2: Project “Synus”

This chapter evaluates the efficiency of approach introduced in chapter 5 to solve two
problems during the managed evolution of LL-CPSs in this thesis: one problem is the local
minimization of the reconstruction costs of implementation (economic requirements), the
other one is the controlled risks in ongoing operations (risk management). Therefore, the
evaluation is divided into two parts: the development risk evaluation and economic
evaluation. Figure 105 shows the evaluation concept. In this chapter, two cases are used to
evaluate this approach. One is the laboratory model of the conveyor system with ASRS
introduced in chapter 3, which will be here continually applied for the evaluation. The other
one is an industry project named in short Synus: Methods and tools for the synergetic
conception and evaluation of Industry 4.0 solutions, which is funded by the European Regional
Development Fund (EFRE-ZW 6-85012454) and managed by the Project Management Agency
NBank [58].

Development
risk
Evaluation
Solution by using
the appoach
Economic
Evaluation

Figure 105: The evaluation concept

7.1 Case study 1: Conveyor System with ASRS

Continuing the laboratory model of a conveyor system with ASRS in chapter 3, the ongoing
system is defined as the existing status of this LL-CPS and described with a VSM model (section
3.1.1) and an IBD model (section 3.1.2). The targeted status of this LL-CPS is formed with
another VSM model (section 3.2.2), which also describes the new functional requirements
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during the managed evolution. By using the approach, a set of IBD models is generated,
whereby a final solution is selected and implemented that represents the local optimal costs
of the reconstruction. In order to evaluate this solution, another IBD model is chosen for
evaluating the economic requirements and development risk. In this case, the direct costs are
defined as the reconstruction costs during the managed evolution of a LL-CPS, whereby it is
not necessary to consider the time-dependent costs.

7.1.1 Managed evolution of LL-CPS by using the approach

The existing status of LL-CPS is represented with a IBD model m,. The final solution is formed
with IBD model m, ,. IBD model m,, represents another evolution solution. They will be
implemented and compared with each other and model m.. This comparison is from four
areas in LL-CPS: the relevant environment factors, mechanical system, control system and
information system. The reconstructions during the managed evolution of LL-CPS are specified
into three actions: the addition, modification and deletion.

The implemented model m,; 4

Model m, ; is implemented as one solution for the managed evolution of the ongoing LL-CPS.
A new RFID real sensor is integrated in m, ; to read the color information of the wares. The
software codes are developed to control the gripper robot and many other hardware
components to reach the new functional requirements in the targeted status of this LL-CPS.
Compared with the existing status m., worker 1 is deleted in m, ;. The connections between
worker 1 and the conveyor system are also deleted (see Figure 106).

Conveyor System J—K—A -
with ASRS: \ 5 Worker 2:

“TRelevant environment factor
LL-CPS |
n |
N LN ™.
N .
AN .
AN .
N\ .
N .
N\ \<
N P
9 \
= S
N\ .
:,_L \\\\ \ \\_%_‘
Painting and Dry System: AN | rk :
Relevant environment factor L|‘Rele\.fan i ent factor

Figure 106: Changes of the relevant environment factors in mq s

In the mechanical system in m; ;, a new RFID read sensor is installed. Figure 107 shows the
changes of hardware components in the mechanical system in m ;.
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Figure 107: Changes of hardware components in mechanical system in mqz

In mg 1, the software codes in the control system and information system have to be changed
to adapt to the reconstruction in the mechanical system. Figure 108 shows the changes of the
software codes in the control system in m,; ; compared with the ongoing LL-CPS modeled with
model m,. In this figure, the red color marks the deleted codes during the managed evolution
fromm,tomg,. The green color marks the new added codes and the blue one labels the

codes that changed the executing place.
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Figure 108: Comparing software codes in control system between mc:and mg:

133



Chapter 7 - Evaluation

Figure 109 shows the changes of the codes in the information system during the managed
evolution from m. tomg ;. The new information system has the new codes to visualise the
information collected from the new RFID read sensor.

§ Benutzerverwaltung Runtime
— Gerateeinstellungen
#)-%4g Sprachunterstitzung

%= Text- und Grafiklisten

§ Benutzerverwaktung Runtime _
. Gerateeinstellungen canceled

P Proiect| »
ueew 1952_TP(TP 1778 6" color PN/DP) “-vees 152_TP(TP 177B 6" color PN/DP)
-4 Bilder =1-%¢5 Bilder
) Bild hinzufgen -8} Bid hinzufiigen
1 Vorage [ Vorage
[ Bild_2 [ Bid_2
[] EdiinitList [] EditlnitList
] Main 1 Main
1 R/W Sensor [T R Sensor
1 System 1 R/W Sensor
1 Szenario1 [T System
+-L2 Kommunikation [[] Szenaro1
+-“g& Meldungen % Kommunikation
+-“4 Rezepturen & Meldungen
#-%]; Protokolle 4 Rezepturen
+-%5 Text- und Grafiklisten U Protokolle
+
+

I 5555508
m'e

#1445 Strukturen + Sprachunterstitzung _ added
#)-“4g Versionsverwaltung + Strukturen
13 eensenon B picce changed
Visualization software codes in m,, Visualization software codes inm, ;

Figure 109: Comparing software codes in information system between mcand mq:

The implemented model m,; ,

In mg 5, an existing RFID read/write sensor is used to write the color information into the ware,
when the ware reaches it for the first time, and it is reused to read the color information from
the ware, when the ware reaches it again. In this situation, the other hardware components
have to be adapted to reach this requirement. Accordingly, all four conveyor belts have to
after the painting color process continually transport the wares in a cycle to enable the wares
to reach the existing RFID read/write sensor again. Meanwhile the gripper and the
photoelectric sensor are blocked to let the ware run in a cycle and activated again, when the
read/write sensor obtain the full information of all wares.

Compared with the existing status m., worker 1 and its related connections have to be deleted
to reach the requirements in targeted status of this LL-CPS (see Figure 110).
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In the mechanical system in m,,, there are no changes during the managed evolution.
However, the software codes need to be developed to reach the functional requirements.
Figure 111 shows the changes of software codes in the control system in m, , compared with
me.
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The new codes in the information system in m , visualise the information collected by using
the existing RFID Read/Write sensor (see Figure 112). The other code changes in mq,
comparing to the ongoing LL-CPS is introduced in section 13.2.
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7.1.2 Comparison of solutions

The evolution function fm and its linear equations system introduced in section 4.4.2 are used

here to compare the changes between m; ; and m ,.

There are

and

fmy(m,) = mgq
fmy(my) =mg,
mgq = Mg SY) Mcél

— A2
md,z = m; @ Mc

The set of sub-models M2! represents the changes during the managed evolution form m, to

mg 1, and M22 represents the changes during the managed evolution form m, to Mg 5.

7.1.3 Development risk evaluation

The development risk evaluation can be divided into three parts: risk identification, risk

analysis and risk prioritization [59] as cited in [60]. The risk identification entails listing the

important risks. In this case, the matching of functions is identified as the most import risk
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factor for the managed evolution of LL-CPSs. The risk analysis involves the possible negative
effects for each risk. The risk prioritization specifies the sequence of negative effects of risks.

The functional requirements have been defined with a VSM model in section 3.2 and are
specified with the following points:

There is no worker standing by the buffer belt to sort the wares.
The color information is read by using RFID sensor.

3. The wares are retrieved through the gripper robot with the sort information in the
predefined floor in the warehouse.

Table 15 shows that all of the functional requirements are satisfied in m, ; and my .

Requirements Solution mg 4 Solution mg ,
1 Yes Yes
2 Yes Yes
3 Yes Yes

Table 15. The functional evaluation of two solutions

7.1.4 Economic evaluation

In order to evaluate the economic efficiency, the economic requirements during the managed
evolution of LL-CPSs need to be specified. In this case, the total reconstruction costs only
comprise the direct costs. The indirect costs, the non-construction related costs, the time
dependent costs, the software codes rewriting costs e.g. are not included in the total
reconstruction costs. A costs function C represents a mapping relationship from the model
and relation elements to their direct costs for reconstruction. DC is a set of direct costs of the
model and relation elements for reconstruction during managed evolution of LL-CPSs.

Definition 52
C:=(MEUVUA)->DC

The local optimal solution must have a local minimal reconstruction costs compared with the
ongoing LL-CPS (see Definition 18).

Peosts = min(C(McAi))

i=1-,n neN
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In this case, the model elements are classified into a set of hardware elements and a set of
software elements, because the direct reconstruction costs are related to this character of the
model elements. The reconstructions of any relation element are defined as the cost free
works. Table 16 shows an example of the direct reconstruction costs of the model and
relations elements classified by cyber-physical characters.

Reconstruction actions
Addition Modification Deletion
Character
HW element 200 unit 100 unit 20 unit
SW element 50 unit 20 unit 1 unit
Relation element 0 unit 0 unit 0 unit

Table 16: Example of the direct costs for reconstruction

The addition of a new hardware element is among the most expensive in all of the
reconstruction actions. The modifications of hardware and software elements incur more
costs than their deletions. The costs unit here is a unit of measurement, named as a unit.

The model m, , can be proved by practice as the local optimal solution in the set of all possible
solutions by using the method named proof by exhaustion, in which the direct reconstruction
costs of every model and relation element in the table above are used to check the local
solutions.

7.2 Case study 2: Project “Synus”

Industry 4.0 is the short name for the fourth industrial evolution, which encompasses areas of
intelligent, network, smart factory, etc. Since 2012, the German Federal Ministry of Education
and Research has supported more than EUR 120 Million for projects in the context of industry
4.0 to improve the global competitiveness and the level of prosperity in the country [61]. In
the coming years, it is expected that German industrial companies will invest up to EUR 40
Billion in industry 4.0 solutions [62]. The project “Methods and tools for the synergetic
conception and evaluation of Industry 4.0 solutions” (in short Synus) began in June 2017 and
will last until June 2020. The important goal of this project is to solve the problem that during
the use of industry 4.0 solutions often involve high investment and unknown follow-up costs;
for instance, integration an industry 4.0 solution on an ongoing production system. Figure 113
[63] shows a concept for a data-driven managed evolution of a production system, which is
defined as a LL-CPS. The evaluating factors like production time, energy consumption and
processing costs are extracted for the evaluation of the ongoing production system. During
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the analysis of the result of the evaluation by the experts, some current industry 4.0 solutions
are proposed to improve the production performance of the ongoing production system. The
changes from the existing status of this production system to its targeted status are formed
with requirements data, which drives on the evolution of this system. The approach
introduced in this thesis is used to generate a set of the configurations of the components in
the targeted status of this production system, which have to meet the requirements of the
driving data. One of these configurations will be simulated and implemented as a new
production system. This new system is named target 1 and it will be continually evaluated and

% (Experts)

Analysis

evolved into the second iteration.

Evaluation

Industry 4.0
Solutions

Evaluating
Target 2 factors

Driving data

Target 1
Existing
Production
System

Figure 113: Data driven development of a production system

At present, there are few opportunities for small and medium-size enterprises (SMEs) to
gather the information which they need to adopt Industry 4.0 solutions. This project using the
approach provides a decision support for the development of LL-CPSs in the SMEs, before the
implementation of new systems.

The project Synus is financed by European Regional Development Fund (ERDF) for Lower
Saxony to help to reduce the regional imbalances. The goal of ERDF is to build up the economic
and social cohesion in the European Union by correcting imbalances between its regions.
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8 Conclusion and Outlook

Content

8.1 Conclusion

8.2 Outlook

8.1 Conclusion

In this thesis, an approach has been developed to generate a costs local optimal solution for
the managed evolution of a LL-CPS with controlled risks in system development. This solution
is generated by tracing the changes of the planned requirements during the system managed
evolution and it will be used for the implementation of the targeted status of this LL-CPS that
helps the system designer reduce the development risks.

In this thesis, the following research achievements have been achieved:

e The modeling method VSM has been introduced in details and applied to model the
existing and targeted statuses of a LL-CPS.

e The modeling processes and the interfaces specification for a LL-CPS by using the
modeling method IBD have been introduced.

e Agraph based uniform description of the models modeled with two different modeling
methods has been developed.

e A cube model has been formed to integrate the models modeled with two different
modeling methods and the system evolution together. This cube model provides a
clear and formal description for the managed evolution of a LL-CPS modeled with two
different modeling methods. Moreover, it provides the transformations between the
models on the model-based description layer and the graphs on the formal semantical
foundation layer.

e An approach has been developed that uses the cube model to automatic generate a
set of models for implementation by tracing the changes of the planned requirements.
This generating reduces the inconsistency between the system implementation and
the planned requirements during the managed evolution of a LL-CPS. For a long-living
system, this approach can be iteratively and evolutionarily used for a long-term system
evolution.

e This set of models provides a candidate to evaluate the different possible solutions.

e The implementation and evaluation of this approach have been introduced.
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8.2 Outlook

Several areas for future work are suggested regarding the approach presented in this thesis.

First of all, the approach is used on two modeling methods (VSM and IBD) and generates the
evolution changes from one modeling method to another. In the future, it may be improved
by using conduction to diffuse the evolution changes from one modeling method to more
modeling methods. This conduction can chain different modeling methods together to
achieve a synergetic system evolution.

The input models for this approach are formed with a key-value data structure, although the
transformation processes from the input models to this data structure are not automatic.
Therefore, an automatic transformation platform can be developed in the future and
integrated with the modeling tools to supersede the manual transformation.

In this thesis, this approach provides only one final solution. Future work could expand to a
range of a set of solutions; for example, the first ten minimal costs of reconstruction in a set
of solutions.

The local optimal costs of reconstruction is considered as the only one evaluation factor used
to ascertain the final solution in this thesis. However, today increasingly more requirements
need to be factored during managed evolution of a LL-CPS; for example, the energy
expenditure, the costs of maintenance and environmental protection, etc. In the future, this
approach can be continually developed considering more evaluation factors and the
preference of different evaluation requirements.

In summary, this work addresses an important aspect of consistency assurance between
evolution requirements and architectures of implementation. For a complete automation, the
consistency assurance between requirements and architectures in the field of system
engineering needs to be carried out in the future.
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13 Appendixes

13.1 Pseudocodes for oppositeSearch

function oppositeSearch ()

1: initialize: set list tempPath[ ] = null

2: initialize: set a Stack S := null

3: Set Vx.visited = true, Vy.visited = true

4: if Vy has any linked front vertex

5:  push all of the linked front vertices of Vx into S

6:  while S is not empty do

7: if S.peek.visited = false then

8 if m.(S.peek) € Gcel then

9: if S.peek has not linked front vertex then
10: add S.peek into tempPath| ]

11: set S.peek.visited = ture

12: save Path(opposite of tempPath[ ], Vx,Vy) in candidates| |
13: delete S.peek

14: reset tempPath[ ] =null

15: else

16: add S.peek into tempPath] ]

17: set S.peek.visited = ture

18: replace S.peek with all of its linked front vertices in S
19: else

20: add S.peek into tempPath] ]

21: set S.peek.visited = ture

22: save Path(opposite of tempPath[ ], Vx,Vy) in candidates| |
23: delete S.peek

24: reset tempPath[ ] =null

25: else

26: delete S.peek

27: End if

28: End while

29: else

30: save Path(Vx,Vy) in candidates][ ]

13.2 Comparing code changes

The following codes in Structured Control Language SCL in Siemens S7 implement the counting
function by using of the photoelectric sensor. Figure 114 shows the codes in the ongoing LL-
CPS.
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Ist-Werte
IF Werkstueckerkannt=true THEN

IF zahlerRot_soll <> zahlerRot_ist THEN
zahlerRot_ist:= zahlerRot_ist +1;

ELSIF zahlerGelb soll <> zahlerGelb ist THEN
zahlerGelb_ist:= zahlerGelb ist+1 ;

ELSIF zahlerBlau ist<> zahlerBlau soll then
zahlerBlau_ist:= zahlerBlau_ist +1;

END_IF;
IF (zahlerRot_soll+zahlerGelb_soll+zahlerBlau soll) = (zahlerRot_ist+zahlerGelb_ist-+zahlerBlau_ist) THEN
Produktionsziel erreicht:= true;
END_IF;
END_IF;

Figure 114: SCL codes in the ongoing LL-CPS

In the targeted status of LL-CPS, these code in Figure 114 will be changed with the state
variable “Werkstueckerkennt” from “true” to “false”. In order to meet the functional
requirements, the new codes are added as in Figure 115 and Figure 116.

hwischenErgebnis := dblS5l.HeadID2.FixData.colorType;
DB105.DBW[i] := INT_TO WORD(zwischenErgebnis);

IF zwischenErgebnis = 1 THEN
zahlerRot_ist:= zahlerRot_ist +1;
ELSIF zwischenErgebnis = 2 THEN
zahlerGelb_ist:= zahlerGelb_ist+1 ;
ELSIF zwischenErgebnis = 3 then
zahlerBlau ist:= zahlerBlau ist +1;
END _IF;

Figure 115: New added SCL codes in the target status of the LL-CPS
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Figure 116: New added FUP codes in the target status of the LL-CPS
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